Pressure drop prediction for R407C fluid during flow evaporation in horizontal pipes using Kalman Filter

IF 3.5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
{"title":"Pressure drop prediction for R407C fluid during flow evaporation in horizontal pipes using Kalman Filter","authors":"","doi":"10.1016/j.ijrefrig.2024.07.027","DOIUrl":null,"url":null,"abstract":"<div><div>The estimation of pressure drop in systems involving two-phase fluids holds a substantial influence over system design, energy efficiency, heat transfer dynamics, and the overall system performance. Existing correlations in the current literature exhibit considerable errors, primarily attributable to the diverse characteristics of flow patterns inside the pipe. This work presents a discussion on the pressure drop of the R-407C fluid in horizontal pipes during two-phase flow, along with the application of the Kalman Filter to improve the estimations produced by well-known correlations. The initialization data used were obtained through equations created based on experimental data and considering the influence that diameter, mass velocity, and saturation pressure have on the pressure drop. The correlations used as a basis for the calculations were selected from the literature, considering the lowest percentage error observed in the pressure drop estimation. Experimental data of pressure drop where compared with the results the obtained by using the correlation alone and in combination with a Kalman Filter. For tubes with a diameter greater than 1.5 mm, applying the correlation together with the Kalman Filter resulted in a Mean Absolute Relative Deviation (MARD) of 15.71, whereas using the correlation alone yielded a MARD of 28.26. For tubes with diameters of 1.5 mm or less, the MARD values were 12.12 and 62.90, for the combination of correlation and the Kalman Filter and for the correlation alone, respectively. These results underscore the viability of the Kalman Filter as an effective tool for improving the accuracy of pressure drop calculations in horizontal tubes.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700724002688","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The estimation of pressure drop in systems involving two-phase fluids holds a substantial influence over system design, energy efficiency, heat transfer dynamics, and the overall system performance. Existing correlations in the current literature exhibit considerable errors, primarily attributable to the diverse characteristics of flow patterns inside the pipe. This work presents a discussion on the pressure drop of the R-407C fluid in horizontal pipes during two-phase flow, along with the application of the Kalman Filter to improve the estimations produced by well-known correlations. The initialization data used were obtained through equations created based on experimental data and considering the influence that diameter, mass velocity, and saturation pressure have on the pressure drop. The correlations used as a basis for the calculations were selected from the literature, considering the lowest percentage error observed in the pressure drop estimation. Experimental data of pressure drop where compared with the results the obtained by using the correlation alone and in combination with a Kalman Filter. For tubes with a diameter greater than 1.5 mm, applying the correlation together with the Kalman Filter resulted in a Mean Absolute Relative Deviation (MARD) of 15.71, whereas using the correlation alone yielded a MARD of 28.26. For tubes with diameters of 1.5 mm or less, the MARD values were 12.12 and 62.90, for the combination of correlation and the Kalman Filter and for the correlation alone, respectively. These results underscore the viability of the Kalman Filter as an effective tool for improving the accuracy of pressure drop calculations in horizontal tubes.
利用卡尔曼滤波器预测 R407C 流体在水平管道中流动蒸发时的压降
在涉及两相流体的系统中,压降的估算对系统设计、能源效率、传热动力学和整个系统的性能都有重大影响。现有文献中的相关数据存在相当大的误差,这主要归因于管道内部流动模式的不同特性。本研究讨论了两相流动时 R-407C 流体在水平管道中的压降,并应用卡尔曼滤波器改进了由著名相关方法产生的估计值。所使用的初始化数据是通过基于实验数据并考虑到直径、质量速度和饱和压力对压力降的影响而创建的方程式获得的。作为计算基础的相关系数是从文献中挑选出来的,考虑到了压降估算中观察到的最低误差百分比。压力降的实验数据与单独使用相关性和结合卡尔曼滤波器得出的结果进行了比较。对于直径大于 1.5 毫米的管道,将相关性与卡尔曼滤波器结合使用得出的平均绝对相对偏差(MARD)为 15.71,而单独使用相关性得出的平均绝对相对偏差为 28.26。对于直径为 1.5 毫米或以下的试管,结合使用相关性和卡尔曼滤波器以及单独使用相关性的平均绝对相对偏差值分别为 12.12 和 62.90。这些结果表明,卡尔曼滤波器是提高水平管道压降计算精度的有效工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
12.80%
发文量
363
审稿时长
3.7 months
期刊介绍: The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling. As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews. Papers are published in either English or French with the IIR news section in both languages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信