Yi-Fan Zhang , Shan Zhu , Ya-Wen Zuo , Hang Liu , Ruo-Xing Jin , Xi-Sheng Wang
{"title":"Visible light-induced photocatalytic deoxyfluorination of benzyl alcohol using SF6 as a fluorinating reagent†","authors":"Yi-Fan Zhang , Shan Zhu , Ya-Wen Zuo , Hang Liu , Ruo-Xing Jin , Xi-Sheng Wang","doi":"10.1039/d4gc03324h","DOIUrl":null,"url":null,"abstract":"<div><div>As fluorine atoms significantly strengthen the metabolic stability and bioavailability of organic molecules, benzyl fluoride is found as an essential skeleton in pharmaceuticals or biologically active molecules. Here, we employ sulfur hexafluoride (SF<sub>6</sub>) as an efficient fluorinating reagent, achieving nucleophilic fluorination of widely available benzyl alcohols under visible LED light irradiation with a low dosage of photocatalyst 4CzIPN. The reaction is compatible with several substrate backbones and is not air- or moisture-sensitive, realizing the degradation and utilization of SF<sub>6</sub>, a potent greenhouse gas resource.</div></div>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1463926224007684","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
As fluorine atoms significantly strengthen the metabolic stability and bioavailability of organic molecules, benzyl fluoride is found as an essential skeleton in pharmaceuticals or biologically active molecules. Here, we employ sulfur hexafluoride (SF6) as an efficient fluorinating reagent, achieving nucleophilic fluorination of widely available benzyl alcohols under visible LED light irradiation with a low dosage of photocatalyst 4CzIPN. The reaction is compatible with several substrate backbones and is not air- or moisture-sensitive, realizing the degradation and utilization of SF6, a potent greenhouse gas resource.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.