Breaking small automorphisms by list colourings

Pub Date : 2024-09-17 DOI:10.1002/jgt.23181
Jakub Kwaśny, Marcin Stawiski
{"title":"Breaking small automorphisms by list colourings","authors":"Jakub Kwaśny, Marcin Stawiski","doi":"10.1002/jgt.23181","DOIUrl":null,"url":null,"abstract":"For a graph , we define a small automorphism as one that maps some vertex into its neighbour. We investigate the edge colourings of that break every small automorphism of . We show that such a colouring can be chosen from any set of lists of length 3. In addition, we show that any set of lists of length 2 on both edges and vertices of yields a total colouring which breaks all the small automorphisms of . These results are sharp, and they match the known bounds for the nonlist variant.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/jgt.23181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For a graph , we define a small automorphism as one that maps some vertex into its neighbour. We investigate the edge colourings of that break every small automorphism of . We show that such a colouring can be chosen from any set of lists of length 3. In addition, we show that any set of lists of length 2 on both edges and vertices of yields a total colouring which breaks all the small automorphisms of . These results are sharp, and they match the known bounds for the nonlist variant.
分享
查看原文
通过列表着色打破小自变形
对于图 ,我们将小自变量定义为将某个顶点映射到其邻近顶点的自变量。我们研究了能打破 ......的所有小自形性的边着色,结果表明,这种着色可以从任意一组长度为 3 的列表中选择。 此外,我们还证明,在 ......的边和顶点上任意一组长度为 2 的列表都能产生一种总着色,它能打破 ......的所有小自形性。 这些结果非常尖锐,而且与非列表变体的已知界限相吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信