Instigating Cooperation among LLM Agents Using Adaptive Information Modulation

Qiliang ChenSepehr, AlirezaSepehr, Ilami, Nunzio Lore, Babak Heydari
{"title":"Instigating Cooperation among LLM Agents Using Adaptive Information Modulation","authors":"Qiliang ChenSepehr, AlirezaSepehr, Ilami, Nunzio Lore, Babak Heydari","doi":"arxiv-2409.10372","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel framework combining LLM agents as proxies for\nhuman strategic behavior with reinforcement learning (RL) to engage these\nagents in evolving strategic interactions within team environments. Our\napproach extends traditional agent-based simulations by using strategic LLM\nagents (SLA) and introducing dynamic and adaptive governance through a\npro-social promoting RL agent (PPA) that modulates information access across\nagents in a network, optimizing social welfare and promoting pro-social\nbehavior. Through validation in iterative games, including the prisoner\ndilemma, we demonstrate that SLA agents exhibit nuanced strategic adaptations.\nThe PPA agent effectively learns to adjust information transparency, resulting\nin enhanced cooperation rates. This framework offers significant insights into\nAI-mediated social dynamics, contributing to the deployment of AI in real-world\nteam settings.","PeriodicalId":501112,"journal":{"name":"arXiv - CS - Computers and Society","volume":"194 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computers and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a novel framework combining LLM agents as proxies for human strategic behavior with reinforcement learning (RL) to engage these agents in evolving strategic interactions within team environments. Our approach extends traditional agent-based simulations by using strategic LLM agents (SLA) and introducing dynamic and adaptive governance through a pro-social promoting RL agent (PPA) that modulates information access across agents in a network, optimizing social welfare and promoting pro-social behavior. Through validation in iterative games, including the prisoner dilemma, we demonstrate that SLA agents exhibit nuanced strategic adaptations. The PPA agent effectively learns to adjust information transparency, resulting in enhanced cooperation rates. This framework offers significant insights into AI-mediated social dynamics, contributing to the deployment of AI in real-world team settings.
利用自适应信息调制促进 LLM 代理之间的合作
本文介绍了一种新颖的框架,它将作为人类战略行为代理的 LLM 代理与强化学习(RL)相结合,让这些代理参与团队环境中不断发展的战略互动。我们的方法扩展了传统的基于代理的模拟,使用了战略 LLM 代理(SLA),并通过一个促进亲社会的 RL 代理(PPA)引入了动态和自适应治理,PPA 可以调节网络中各代理之间的信息访问,优化社会福利并促进亲社会行为。通过迭代博弈(包括囚徒困境)的验证,我们证明了 SLA 代理会表现出细微的战略适应性。这一框架为人工智能中介的社会动态提供了重要见解,有助于人工智能在现实世界团队环境中的部署。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信