Thermodynamic Equilibrium between Non-Stoichiometric Na-β-Alumina and α-Alumina

IF 3.1 4区 工程技术 Q2 ELECTROCHEMISTRY
Helfried Näfe and Yude Wang
{"title":"Thermodynamic Equilibrium between Non-Stoichiometric Na-β-Alumina and α-Alumina","authors":"Helfried Näfe and Yude Wang","doi":"10.1149/1945-7111/ad6ebb","DOIUrl":null,"url":null,"abstract":"A solid-state electrochemical technique based on a potentiometric oxygen concentration cell has been used to characterize the thermodynamic stability of the phase mixture α-Al2O3 + Na-β-Al2O3 by determining its Na2O activity. In combination with phase analysis based on Rietveld refinement of X-ray diffraction patterns the magnitude and variability of the stoichiometric composition of the β-phase have been quantified. Upon variation of the Na2O content of the phase mixture, the Na2O activity resulting from the α/β-equilibrium has proved to be stable because both phases are readily inter-convertible. This behaviour guarantees that the material is eminently suitable as a stable sodium electrode, while simultaneously functioning as a sodium-ion conducting solid electrolyte. The temperature dependence of the logarithm of the Na2O activity has been found to be two-part. This is in line with the trend of the majority of critically assessed literature data thus demonstrating that former apprehension about the prevalence of a possible methodical flaw due to electronic conduction was unsubstantiated. As a conclusion, the knowledge about electronic conduction through Na-β-Al2O3 is advanced. The findings are the prerequisite for putting a straightforward solid-state CO2 sensor and sodium ion battery into practice.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":"35 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad6ebb","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

A solid-state electrochemical technique based on a potentiometric oxygen concentration cell has been used to characterize the thermodynamic stability of the phase mixture α-Al2O3 + Na-β-Al2O3 by determining its Na2O activity. In combination with phase analysis based on Rietveld refinement of X-ray diffraction patterns the magnitude and variability of the stoichiometric composition of the β-phase have been quantified. Upon variation of the Na2O content of the phase mixture, the Na2O activity resulting from the α/β-equilibrium has proved to be stable because both phases are readily inter-convertible. This behaviour guarantees that the material is eminently suitable as a stable sodium electrode, while simultaneously functioning as a sodium-ion conducting solid electrolyte. The temperature dependence of the logarithm of the Na2O activity has been found to be two-part. This is in line with the trend of the majority of critically assessed literature data thus demonstrating that former apprehension about the prevalence of a possible methodical flaw due to electronic conduction was unsubstantiated. As a conclusion, the knowledge about electronic conduction through Na-β-Al2O3 is advanced. The findings are the prerequisite for putting a straightforward solid-state CO2 sensor and sodium ion battery into practice.
非均衡 Na-β 氧化铝和 α 氧化铝之间的热力学平衡
基于电位氧浓度池的固态电化学技术,通过测定 Na2O 活性,表征了 α-Al2O3 + Na-β-Al2O3 相混合物的热力学稳定性。结合基于 X 射线衍射图样的里特维尔德细化的相分析,对 β 相的化学计量成分的大小和变化进行了量化。随着相混合物中 Na2O 含量的变化,α/β 平衡所产生的 Na2O 活性被证明是稳定的,因为这两种相很容易相互转换。这种特性保证了这种材料非常适合用作稳定的钠电极,同时还能用作钠离子传导固体电解质。研究发现,Na2O 活性对数的温度依赖性由两部分组成。这与大部分经过严格评估的文献数据的趋势一致,从而证明以前关于电子传导可能导致方法缺陷的担忧是没有根据的。总之,通过 Na-β-Al2O3 进行电子传导的知识得到了发展。这些发现是将直接固态二氧化碳传感器和钠离子电池付诸实践的先决条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
12.80%
发文量
1369
审稿时长
1.5 months
期刊介绍: The Journal of The Electrochemical Society (JES) is the leader in the field of solid-state and electrochemical science and technology. This peer-reviewed journal publishes an average of 450 pages of 70 articles each month. Articles are posted online, with a monthly paper edition following electronic publication. The ECS membership benefits package includes access to the electronic edition of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信