Luis Villegas, Amin Rafiei, Guillermo A. Narsilio, Chanakya Arya, Raul Fuentes
{"title":"Laboratory-scale thermo-activated piles under long continuous operation and different mobilised shaft resistance","authors":"Luis Villegas, Amin Rafiei, Guillermo A. Narsilio, Chanakya Arya, Raul Fuentes","doi":"10.1007/s11440-024-02397-7","DOIUrl":null,"url":null,"abstract":"<div><p>This paper examines the shaft resistance mobilisation ratio as a predictor of cumulative displacement of small-scale floating and end-bearing energy pile foundations subjected to vertical compressive loads embedded in dry sandy soils. A reduced friction model pile was subjected to different mechanical loads and two long-duration, cyclic heating/recovery temperature changes. The pile, soil and container temperatures, pile strains, and vertical displacements are monitored, analysed, and discussed. The results further validate numerical analyses that propose the shaft resistance mobilisation ratio as a variable to identify thresholds above which permanent cyclic thermo-induced deformations may occur. Overall, the experimentally observed responses indicate incremental deformations as the shaft resistance mobilisation ratio increased. The results also suggest that a mobilisation ratio of 66% could be a potential conservative lower-bound limit that could control the increment of thermal-induced vertical displacements in the long term under free pile head conditions. This suggests that a performance-based design would be a reasonable approach for energy piles, and monitoring programs should be set in the field before loading and thermo-activation.</p></div>","PeriodicalId":49308,"journal":{"name":"Acta Geotechnica","volume":"19 10","pages":"6787 - 6808"},"PeriodicalIF":5.6000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11440-024-02397-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geotechnica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11440-024-02397-7","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper examines the shaft resistance mobilisation ratio as a predictor of cumulative displacement of small-scale floating and end-bearing energy pile foundations subjected to vertical compressive loads embedded in dry sandy soils. A reduced friction model pile was subjected to different mechanical loads and two long-duration, cyclic heating/recovery temperature changes. The pile, soil and container temperatures, pile strains, and vertical displacements are monitored, analysed, and discussed. The results further validate numerical analyses that propose the shaft resistance mobilisation ratio as a variable to identify thresholds above which permanent cyclic thermo-induced deformations may occur. Overall, the experimentally observed responses indicate incremental deformations as the shaft resistance mobilisation ratio increased. The results also suggest that a mobilisation ratio of 66% could be a potential conservative lower-bound limit that could control the increment of thermal-induced vertical displacements in the long term under free pile head conditions. This suggests that a performance-based design would be a reasonable approach for energy piles, and monitoring programs should be set in the field before loading and thermo-activation.
期刊介绍:
Acta Geotechnica is an international journal devoted to the publication and dissemination of basic and applied research in geoengineering – an interdisciplinary field dealing with geomaterials such as soils and rocks. Coverage emphasizes the interplay between geomechanical models and their engineering applications. The journal presents original research papers on fundamental concepts in geomechanics and their novel applications in geoengineering based on experimental, analytical and/or numerical approaches. The main purpose of the journal is to foster understanding of the fundamental mechanisms behind the phenomena and processes in geomaterials, from kilometer-scale problems as they occur in geoscience, and down to the nano-scale, with their potential impact on geoengineering. The journal strives to report and archive progress in the field in a timely manner, presenting research papers, review articles, short notes and letters to the editors.