Evaluating probabilistic and data-driven inference models for fiber-coupled NV-diamond temperature sensors

Shraddha Rajpal, Zeeshan Ahmed, Tyrus Berry
{"title":"Evaluating probabilistic and data-driven inference models for fiber-coupled NV-diamond temperature sensors","authors":"Shraddha Rajpal, Zeeshan Ahmed, Tyrus Berry","doi":"arxiv-2409.09487","DOIUrl":null,"url":null,"abstract":"We evaluate the impact of inference model on uncertainties when using\ncontinuous wave Optically Detected Magnetic Resonance (ODMR) measurements to\ninfer temperature. Our approach leverages a probabilistic feedforward inference\nmodel designed to maximize the likelihood of observed ODMR spectra through\nautomatic differentiation. This model effectively utilizes the temperature\ndependence of spin Hamiltonian parameters to infer temperature from spectral\nfeatures in the ODMR data. We achieve prediction uncertainty of $\\pm$ 1 K\nacross a temperature range of 243 K to 323 K. To benchmark our probabilistic\nmodel, we compare it with a non-parametric peak-finding technique and\ndata-driven methodologies such as Principal Component Regression (PCR) and a 1D\nConvolutional Neural Network (CNN). We find that when validated against\nout-of-sample dataset that encompasses the same temperature range as the\ntraining dataset, data driven methods can show uncertainties that are as much\nas 0.67 K lower without incorporating expert-level understanding of the\nspectroscopic-temperature relationship. However, our results show that the\nprobabilistic model outperforms both PCR and CNN when tasked with extrapolating\nbeyond the temperature range used in training set, indicating robustness and\ngeneralizability. In contrast, data-driven methods like PCR and CNN demonstrate\nup to ten times worse uncertainties when tasked with extrapolating outside\ntheir training data range.","PeriodicalId":501374,"journal":{"name":"arXiv - PHYS - Instrumentation and Detectors","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Instrumentation and Detectors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We evaluate the impact of inference model on uncertainties when using continuous wave Optically Detected Magnetic Resonance (ODMR) measurements to infer temperature. Our approach leverages a probabilistic feedforward inference model designed to maximize the likelihood of observed ODMR spectra through automatic differentiation. This model effectively utilizes the temperature dependence of spin Hamiltonian parameters to infer temperature from spectral features in the ODMR data. We achieve prediction uncertainty of $\pm$ 1 K across a temperature range of 243 K to 323 K. To benchmark our probabilistic model, we compare it with a non-parametric peak-finding technique and data-driven methodologies such as Principal Component Regression (PCR) and a 1D Convolutional Neural Network (CNN). We find that when validated against out-of-sample dataset that encompasses the same temperature range as the training dataset, data driven methods can show uncertainties that are as much as 0.67 K lower without incorporating expert-level understanding of the spectroscopic-temperature relationship. However, our results show that the probabilistic model outperforms both PCR and CNN when tasked with extrapolating beyond the temperature range used in training set, indicating robustness and generalizability. In contrast, data-driven methods like PCR and CNN demonstrate up to ten times worse uncertainties when tasked with extrapolating outside their training data range.
评估光纤耦合 NV-Diamond 温度传感器的概率和数据驱动推理模型
我们评估了在使用连续波光检测磁共振(ODMR)测量来推断温度时,推断模型对不确定性的影响。我们的方法利用了一种概率前馈推理模型,旨在通过自动区分最大化观测到的 ODMR 光谱的可能性。该模型有效利用自旋哈密顿参数的温度依赖性,从 ODMR 数据的光谱特征推断温度。为了对我们的概率模型进行基准测试,我们将其与非参数峰值发现技术以及主成分回归(PCR)和1DC卷积神经网络(CNN)等数据驱动方法进行了比较。我们发现,在与样本外数据集(包含与训练数据集相同的温度范围)进行验证时,数据驱动方法可以显示出低达 0.67 K 的不确定性,而无需结合对光谱-温度关系的专家级理解。不过,我们的结果表明,当推断任务超出训练集所使用的温度范围时,概率模型的表现优于 PCR 和 CNN,这表明概率模型具有鲁棒性和通用性。相比之下,PCR 和 CNN 等数据驱动型方法在外推法超出其训练数据范围时,其不确定性最多可降低 10 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信