Ece Özcan-Bülbül, Yağmur Kalender, Ayça Bal-Öztürk, Neslihan Üstündağ-Okur
{"title":"Preparation and In Vitro Evaluation of Montelukast Sodium-Loaded 3D Printed Orodispersible Films for the Treatment of Asthma","authors":"Ece Özcan-Bülbül, Yağmur Kalender, Ayça Bal-Öztürk, Neslihan Üstündağ-Okur","doi":"10.1208/s12249-024-02938-z","DOIUrl":null,"url":null,"abstract":"<div><p>This research aims to produce orodispersible films (ODFs) and determine their potential use in the oral delivery of montelukast sodium for asthma treatment and allergic rhinitis. ODFs were successfully developed by Three-dimensional (3D) printing using propylene glycol (PG), and hydroxypropyl methylcellulose (HPMC), polyethylene glycol 400 (PEG). Finally, the amount of montelukast sodium in the ODFs was 5% (w/w). Drug-excipients compatibility with Fourier Transformed Infrared (FTIR) spectroscopy, mass uniformity, thickness, disintegration time, folding endurance, moisture absorption, pH, <i>in vitro</i> drug release (dissolution), drug content, moisture loss, moisture content, mechanical properties, and cytotoxicity studies were performed on the prepared films. All formulations disintegrated in approximately 40 s. Over 98% of drug release from all films within 2 min was confirmed. It was reported that Fm1-4 (8% HPMC and 1% PEG) and Fm2-4 (10% HPMC and 3% PEG) are more suitable for drug content, but Fm2-4 may be the ideal formulation considering its durability and transportability properties. Based on the characterization results and <i>in vitro</i> release values, the montelukast sodium ODF can be an option for other dosage forms. It was concluded that the formulations did not show toxic potential by <i>in vitro</i> cytotoxicity study with 3T3 cells. This new formulation can efficiently treat allergic rhinitis and asthma diseases.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"25 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS PharmSciTech","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1208/s12249-024-02938-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
This research aims to produce orodispersible films (ODFs) and determine their potential use in the oral delivery of montelukast sodium for asthma treatment and allergic rhinitis. ODFs were successfully developed by Three-dimensional (3D) printing using propylene glycol (PG), and hydroxypropyl methylcellulose (HPMC), polyethylene glycol 400 (PEG). Finally, the amount of montelukast sodium in the ODFs was 5% (w/w). Drug-excipients compatibility with Fourier Transformed Infrared (FTIR) spectroscopy, mass uniformity, thickness, disintegration time, folding endurance, moisture absorption, pH, in vitro drug release (dissolution), drug content, moisture loss, moisture content, mechanical properties, and cytotoxicity studies were performed on the prepared films. All formulations disintegrated in approximately 40 s. Over 98% of drug release from all films within 2 min was confirmed. It was reported that Fm1-4 (8% HPMC and 1% PEG) and Fm2-4 (10% HPMC and 3% PEG) are more suitable for drug content, but Fm2-4 may be the ideal formulation considering its durability and transportability properties. Based on the characterization results and in vitro release values, the montelukast sodium ODF can be an option for other dosage forms. It was concluded that the formulations did not show toxic potential by in vitro cytotoxicity study with 3T3 cells. This new formulation can efficiently treat allergic rhinitis and asthma diseases.
期刊介绍:
AAPS PharmSciTech is a peer-reviewed, online-only journal committed to serving those pharmaceutical scientists and engineers interested in the research, development, and evaluation of pharmaceutical dosage forms and delivery systems, including drugs derived from biotechnology and the manufacturing science pertaining to the commercialization of such dosage forms. Because of its electronic nature, AAPS PharmSciTech aspires to utilize evolving electronic technology to enable faster and diverse mechanisms of information delivery to its readership. Submission of uninvited expert reviews and research articles are welcomed.