Multifunctional injectable microspheres for osteoarthritis therapy via spatiotemporally modulating macrophage polarization and inflammation

IF 6.4 1区 医学 Q1 CELL & TISSUE ENGINEERING
Shengnan Qiu, Yanbin Shi, Hengchang Zang, Xiaochen Sun, Qingjie Wang, Xianglei Fu, Hua Shen, Fanyang Mo, Yankun Zhang, Xiangqin Chen, Jiamin Zhou, Lian Li, Guimei Lin
{"title":"Multifunctional injectable microspheres for osteoarthritis therapy via spatiotemporally modulating macrophage polarization and inflammation","authors":"Shengnan Qiu, Yanbin Shi, Hengchang Zang, Xiaochen Sun, Qingjie Wang, Xianglei Fu, Hua Shen, Fanyang Mo, Yankun Zhang, Xiangqin Chen, Jiamin Zhou, Lian Li, Guimei Lin","doi":"10.1038/s41536-024-00368-w","DOIUrl":null,"url":null,"abstract":"<p>Local injection of anti-inflammatory drugs for osteoarthritis emerged as a promising administration in the clinic, and sustained-release dosage forms have great potential for future therapeutic applications. Controlling the response of patients only in the acute inflammatory phase is currently the focus of therapeutic interventions. To relieve acute pain in patients and to improve the long-term prognosis effect of osteoarthritis treatment, we designed a two-pronged approach in this research: an injectable double-layer microsphere containing a “nonsteroidal anti-inflammatory drug - macrophage polarizing factor” was constructed. The results indicated that microspheres could regulate the intra-articular environment by inhibiting local inflammatory cytokine production, promoting macrophage polarization to the M2-phenotype, and increasing the expression of cartilage repair factors. Polymers chosen could govern the biocompatibility of microspheres and control the release sequence of the two drugs. Injection of microspheres into the degenerative articular cavity of rats leads to suppressed inflammation and well-promoted cartilage regeneration.</p>","PeriodicalId":54236,"journal":{"name":"npj Regenerative Medicine","volume":"16 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Regenerative Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41536-024-00368-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Local injection of anti-inflammatory drugs for osteoarthritis emerged as a promising administration in the clinic, and sustained-release dosage forms have great potential for future therapeutic applications. Controlling the response of patients only in the acute inflammatory phase is currently the focus of therapeutic interventions. To relieve acute pain in patients and to improve the long-term prognosis effect of osteoarthritis treatment, we designed a two-pronged approach in this research: an injectable double-layer microsphere containing a “nonsteroidal anti-inflammatory drug - macrophage polarizing factor” was constructed. The results indicated that microspheres could regulate the intra-articular environment by inhibiting local inflammatory cytokine production, promoting macrophage polarization to the M2-phenotype, and increasing the expression of cartilage repair factors. Polymers chosen could govern the biocompatibility of microspheres and control the release sequence of the two drugs. Injection of microspheres into the degenerative articular cavity of rats leads to suppressed inflammation and well-promoted cartilage regeneration.

Abstract Image

通过时空调节巨噬细胞极化和炎症,用于骨关节炎治疗的多功能注射微球
局部注射抗炎药物治疗骨关节炎在临床上是一种很有前景的用药方法,而缓释剂型在未来的治疗应用中具有很大的潜力。目前,仅在急性炎症阶段控制患者的反应是治疗干预的重点。为了缓解患者的急性疼痛并改善骨关节炎治疗的长期预后效果,本研究设计了一种双管齐下的方法:构建了一种含有 "非甾体抗炎药-巨噬细胞极化因子 "的可注射双层微球。结果表明,微球可以通过抑制局部炎症细胞因子的产生、促进巨噬细胞向M2表型极化以及增加软骨修复因子的表达来调节关节内环境。所选聚合物可影响微球的生物相容性,并控制两种药物的释放顺序。向大鼠退行性关节腔注射微球可抑制炎症,促进软骨再生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Regenerative Medicine
npj Regenerative Medicine Engineering-Biomedical Engineering
CiteScore
10.00
自引率
1.40%
发文量
71
审稿时长
12 weeks
期刊介绍: Regenerative Medicine, an innovative online-only journal, aims to advance research in the field of repairing and regenerating damaged tissues and organs within the human body. As a part of the prestigious Nature Partner Journals series and in partnership with ARMI, this high-quality, open access journal serves as a platform for scientists to explore effective therapies that harness the body's natural regenerative capabilities. With a focus on understanding the fundamental mechanisms of tissue damage and regeneration, npj Regenerative Medicine actively encourages studies that bridge the gap between basic research and clinical tissue repair strategies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信