Human lung cancer classification and comprehensive analysis using different machine learning techniques.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
K Priyadarshini,S Ahamed Ali,K Sivanandam,Manjunathan Alagarsamy
{"title":"Human lung cancer classification and comprehensive analysis using different machine learning techniques.","authors":"K Priyadarshini,S Ahamed Ali,K Sivanandam,Manjunathan Alagarsamy","doi":"10.1002/jemt.24682","DOIUrl":null,"url":null,"abstract":"Lung cancer is the most common causes of death among all cancer-related diseases. A lung scan examination of the patient is the primary diagnostic technique. This scan analysis pertains to an MRI, CT, or X-ray. The automated classification of lung cancer is difficult due to the involvement of multiple steps in imaging patients' lungs. In this manuscript, human lung cancer classification and comprehensive analysis using different machine learning techniques is proposed. Initially, the input images are gathered using lung cancer dataset. The proposed method processes these images using image-processing techniques, and further machine learning techniques are utilized for categorization. Seven different classifiers including the k-nearest neighbors (KNN), support vector machine (SVM), decision tree (DT), multinomial naive Bayes (MNB), stochastic gradient descent (SGD), random forest (RF), and multi-layer perceptron (MLP) classifier are used, which classifies the lung cancer as malignant and benign. The performance of the proposed approach is examined using performances metrics, like positive predictive value, accuracy, sensitivity, and f-score are evaluated. Among them, the performance of the MLP classifier provides 25.34%, 45.39%, 15.39%, 41.28%, 22.17%, and 12.12% higher accuracy than other KNN, SVM, DT, MNB, SGD, and RF respectively. RESEARCH HIGHLIGHTS: Lung cancer is a leading cause of cancer-related death. Imaging (MRI, CT, and X-ray) aids diagnosis. Automated classification of lung cancer faces challenges due to complex imaging steps. This study proposes human lung cancer classification using diverse machine learning techniques. Input images from lung cancer dataset undergo image processing and machine learning. Classifiers like k-nearest neighbors, support vector machine, decision tree, multinomial naive Bayes, stochastic gradient descent, random forest, and multi-layer perceptron (MLP) classify cancer types; MLP excels in accuracy.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/jemt.24682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Lung cancer is the most common causes of death among all cancer-related diseases. A lung scan examination of the patient is the primary diagnostic technique. This scan analysis pertains to an MRI, CT, or X-ray. The automated classification of lung cancer is difficult due to the involvement of multiple steps in imaging patients' lungs. In this manuscript, human lung cancer classification and comprehensive analysis using different machine learning techniques is proposed. Initially, the input images are gathered using lung cancer dataset. The proposed method processes these images using image-processing techniques, and further machine learning techniques are utilized for categorization. Seven different classifiers including the k-nearest neighbors (KNN), support vector machine (SVM), decision tree (DT), multinomial naive Bayes (MNB), stochastic gradient descent (SGD), random forest (RF), and multi-layer perceptron (MLP) classifier are used, which classifies the lung cancer as malignant and benign. The performance of the proposed approach is examined using performances metrics, like positive predictive value, accuracy, sensitivity, and f-score are evaluated. Among them, the performance of the MLP classifier provides 25.34%, 45.39%, 15.39%, 41.28%, 22.17%, and 12.12% higher accuracy than other KNN, SVM, DT, MNB, SGD, and RF respectively. RESEARCH HIGHLIGHTS: Lung cancer is a leading cause of cancer-related death. Imaging (MRI, CT, and X-ray) aids diagnosis. Automated classification of lung cancer faces challenges due to complex imaging steps. This study proposes human lung cancer classification using diverse machine learning techniques. Input images from lung cancer dataset undergo image processing and machine learning. Classifiers like k-nearest neighbors, support vector machine, decision tree, multinomial naive Bayes, stochastic gradient descent, random forest, and multi-layer perceptron (MLP) classify cancer types; MLP excels in accuracy.
利用不同的机器学习技术对人类肺癌进行分类和综合分析。
肺癌是所有癌症相关疾病中最常见的致死原因。对患者进行肺部扫描检查是主要的诊断技术。这种扫描分析与核磁共振成像、CT 或 X 光有关。由于患者肺部成像涉及多个步骤,因此很难对肺癌进行自动分类。本手稿提出了使用不同机器学习技术对人类肺癌进行分类和综合分析的方法。首先,利用肺癌数据集收集输入图像。提出的方法利用图像处理技术处理这些图像,并进一步利用机器学习技术进行分类。使用了七种不同的分类器,包括 k-近邻(KNN)、支持向量机(SVM)、决策树(DT)、多项式天真贝叶斯(MNB)、随机梯度下降(SGD)、随机森林(RF)和多层感知器(MLP)分类器,将肺癌分为恶性和良性。我们使用正预测值、准确率、灵敏度和 f 分数等性能指标对所提出方法的性能进行了评估。其中,MLP 分类器的准确率分别比其他 KNN、SVM、DT、MNB、SGD 和 RF 高 25.34%、45.39%、15.39%、41.28%、22.17% 和 12.12%。研究亮点肺癌是癌症相关死亡的主要原因。成像(MRI、CT 和 X 光)有助于诊断。由于成像步骤复杂,肺癌的自动分类面临挑战。本研究提出使用多种机器学习技术对人类肺癌进行分类。肺癌数据集的输入图像经过图像处理和机器学习。k-nearest neighbors、支持向量机、决策树、多项式天真贝叶斯、随机梯度下降、随机森林和多层感知器(MLP)等分类器可对癌症类型进行分类;其中 MLP 的准确率最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信