{"title":"Continuous glucose monitoring using machine learning models and IoT device data: A meta-analysis.","authors":"Yagyesh Kapoor,Yasha Hasija","doi":"10.3233/thc-241403","DOIUrl":null,"url":null,"abstract":"BACKGROUND\r\nMachine learning offers diverse options for effectively managing blood glucose levels in diabetes patients. Selecting the right ML algorithm is critical given the array of available choices. Integrating data from IoT devices presents promising opportunities to enhance real-time blood glucose management models.\r\n\r\nOBJECTIVE\r\nThis meta-analysis aims to evaluate the effectiveness of machine learning models utilizing IoT device data for predicting blood glucose levels.\r\n\r\nMETHODS\r\nWe systematically searched electronic databases for studies published between 2019 and 2023. We excluded studies lacking ML model derivation or performance metrics. The Quality Assessment of Diagnostic Accuracy Studies tool assessed study quality. Our primary outcomes compared ML models for BG level prediction across different prediction horizons (PHs).\r\n\r\nRESULTS\r\nWe analyzed ten eligible studies across prediction horizons of 15, 30, 45, and 60 minutes. ML models exhibited mean absolute RMSE values of 15.02 (SD 1.45), 21.488 (SD 2.92), 30.094 (SD 3.245), and 35.89 (SD 6.4) mg/dL, respectively. Random Forest demonstrated superior performance across these PHs.\r\n\r\nCONCLUSION\r\nWe observed significant heterogeneity across all subgroups, indicating diverse sources of variability. As the PH lengthened, the RMSE for blood glucose prediction by the ML model increased, with Random Forest showing the highest relative performance among the ML models.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/thc-241403","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
BACKGROUND
Machine learning offers diverse options for effectively managing blood glucose levels in diabetes patients. Selecting the right ML algorithm is critical given the array of available choices. Integrating data from IoT devices presents promising opportunities to enhance real-time blood glucose management models.
OBJECTIVE
This meta-analysis aims to evaluate the effectiveness of machine learning models utilizing IoT device data for predicting blood glucose levels.
METHODS
We systematically searched electronic databases for studies published between 2019 and 2023. We excluded studies lacking ML model derivation or performance metrics. The Quality Assessment of Diagnostic Accuracy Studies tool assessed study quality. Our primary outcomes compared ML models for BG level prediction across different prediction horizons (PHs).
RESULTS
We analyzed ten eligible studies across prediction horizons of 15, 30, 45, and 60 minutes. ML models exhibited mean absolute RMSE values of 15.02 (SD 1.45), 21.488 (SD 2.92), 30.094 (SD 3.245), and 35.89 (SD 6.4) mg/dL, respectively. Random Forest demonstrated superior performance across these PHs.
CONCLUSION
We observed significant heterogeneity across all subgroups, indicating diverse sources of variability. As the PH lengthened, the RMSE for blood glucose prediction by the ML model increased, with Random Forest showing the highest relative performance among the ML models.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.