{"title":"Exceptional points in perturbed dielectric spheres: A resonant-state expansion study","authors":"K. S. Netherwood, H. K. Riley, E. A. Muljarov","doi":"10.1103/physreva.110.033518","DOIUrl":null,"url":null,"abstract":"Exceptional points (EPs) in open optical systems are rigorously studied using the resonant-state expansion (RSE). A spherical resonator, specifically a homogeneous dielectric sphere in a vacuum, perturbed by two pointlike defects which break the spherical symmetry and bring the optical modes to EPs, is used as a worked example. The RSE is a nonperturbative approach encoding the information about an open optical system in matrix form in a rigorous way, and thus offering a suitable tool for studying its EPs. These are simultaneous degeneracies of the eigenvalues and corresponding eigenfunctions of the system, which are rigorously described by the RSE and illustrated for perturbed whispering-gallery modes (WGMs). An exceptional arc, which is a line of adjacent EPs, is obtained analytically for perturbed dipolar WGMs. Perturbation of high-quality WGMs with large angular momentum and their EPs are found by reducing the RSE equation to a two-state problem by means of an orthogonal transformation of a large RSE matrix. WGM pairs have opposite chirality in spherically symmetric systems and equal chirality at EPs. This chirality at EPs can be observed in circular dichroism measurements, as it manifested itself in a squared-Lorentzian part of the optical spectra, which we demonstrate here analytically and numerically in the Purcell enhancement factor for the perturbed dipolar WGMs.","PeriodicalId":20146,"journal":{"name":"Physical Review A","volume":"27 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review A","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreva.110.033518","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Exceptional points (EPs) in open optical systems are rigorously studied using the resonant-state expansion (RSE). A spherical resonator, specifically a homogeneous dielectric sphere in a vacuum, perturbed by two pointlike defects which break the spherical symmetry and bring the optical modes to EPs, is used as a worked example. The RSE is a nonperturbative approach encoding the information about an open optical system in matrix form in a rigorous way, and thus offering a suitable tool for studying its EPs. These are simultaneous degeneracies of the eigenvalues and corresponding eigenfunctions of the system, which are rigorously described by the RSE and illustrated for perturbed whispering-gallery modes (WGMs). An exceptional arc, which is a line of adjacent EPs, is obtained analytically for perturbed dipolar WGMs. Perturbation of high-quality WGMs with large angular momentum and their EPs are found by reducing the RSE equation to a two-state problem by means of an orthogonal transformation of a large RSE matrix. WGM pairs have opposite chirality in spherically symmetric systems and equal chirality at EPs. This chirality at EPs can be observed in circular dichroism measurements, as it manifested itself in a squared-Lorentzian part of the optical spectra, which we demonstrate here analytically and numerically in the Purcell enhancement factor for the perturbed dipolar WGMs.
期刊介绍:
Physical Review A (PRA) publishes important developments in the rapidly evolving areas of atomic, molecular, and optical (AMO) physics, quantum information, and related fundamental concepts.
PRA covers atomic, molecular, and optical physics, foundations of quantum mechanics, and quantum information, including:
-Fundamental concepts
-Quantum information
-Atomic and molecular structure and dynamics; high-precision measurement
-Atomic and molecular collisions and interactions
-Atomic and molecular processes in external fields, including interactions with strong fields and short pulses
-Matter waves and collective properties of cold atoms and molecules
-Quantum optics, physics of lasers, nonlinear optics, and classical optics