Relativistic and recoil corrections to vacuum polarization in muonic systems: Three-photon exchange, gauge invariance, and numerical values

IF 2.9 2区 物理与天体物理 Q2 Physics and Astronomy
Gregory S. Adkins, Ulrich D. Jentschura
{"title":"Relativistic and recoil corrections to vacuum polarization in muonic systems: Three-photon exchange, gauge invariance, and numerical values","authors":"Gregory S. Adkins, Ulrich D. Jentschura","doi":"10.1103/physreva.110.032816","DOIUrl":null,"url":null,"abstract":"For an accurate theoretical description of muonic bound systems, it is crucial to consistently treat relativistic and recoil corrections to vacuum polarization. The one-loop vacuum-polarization effect is by far the dominant quantum electrodynamic (QED) energy correction for bound muons, being of order <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>α</mi><msup><mrow><mo>(</mo><mi>Z</mi><mi>α</mi><mo>)</mo></mrow><mn>2</mn></msup><msub><mi>m</mi><mi>r</mi></msub></mrow></math>, where <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>α</mi></math> is the fine-structure constant, <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Z</mi></math> is the nuclear charge number, and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>m</mi><mi>r</mi></msub></math> is the reduced mass. Gauge invariance of the relativistic and recoil corrections to vacuum polarization of order <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>α</mi><msup><mrow><mo>(</mo><mi>Z</mi><mi>α</mi><mo>)</mo></mrow><mn>4</mn></msup><msub><mi>m</mi><mi>r</mi></msub></mrow></math> is investigated with respect to nonretarded and standard, renormalized variants of Coulomb gauge. The invariance is shown after including three-photon exchange diagrams. Our derivation is based on an adapted form of nonrelativistic quantum electrodynamics for bound muon systems (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>NRQED</mi><mi>μ</mi></msub></math>), which is a version of NRQED where the hard scale is set at the muon mass instead of the electron mass. Updated values for the gauge-independent corrections for one-muon ions with nuclear charge numbers <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Z</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>6</mn></mrow></math> are presented.","PeriodicalId":20146,"journal":{"name":"Physical Review A","volume":"24 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review A","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreva.110.032816","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

For an accurate theoretical description of muonic bound systems, it is crucial to consistently treat relativistic and recoil corrections to vacuum polarization. The one-loop vacuum-polarization effect is by far the dominant quantum electrodynamic (QED) energy correction for bound muons, being of order α(Zα)2mr, where α is the fine-structure constant, Z is the nuclear charge number, and mr is the reduced mass. Gauge invariance of the relativistic and recoil corrections to vacuum polarization of order α(Zα)4mr is investigated with respect to nonretarded and standard, renormalized variants of Coulomb gauge. The invariance is shown after including three-photon exchange diagrams. Our derivation is based on an adapted form of nonrelativistic quantum electrodynamics for bound muon systems (NRQEDμ), which is a version of NRQED where the hard scale is set at the muon mass instead of the electron mass. Updated values for the gauge-independent corrections for one-muon ions with nuclear charge numbers Z=1,2,6 are presented.

Abstract Image

μ介子系统真空极化的相对论修正和反冲修正:三光子交换、规规不变性和数值
要对μ介子束缚系统进行准确的理论描述,关键是要始终如一地处理真空极化的相对论修正和反冲修正。一环真空极化效应是迄今为止束缚μ介子最主要的量子电动力学(QED)能量修正,其数量级为α(Zα)2mr,其中α是精细结构常数,Z是核电荷数,mr是还原质量。研究了阶数为α(Zα)4mr 的真空极化的相对论修正和反冲修正在库仑计的非保留和标准重规范化变体方面的量纲不变性。在包括三光子交换图之后,我们发现了其不变性。我们的推导基于针对束缚μ介子系统的非相对论量子电动力学(NRQEDμ)的改编形式,这是 NRQED 的一个版本,其中硬尺度设置为μ介子质量而不是电子质量。本文给出了核电荷数为 Z=1,2,6 的一介子离子的量规无关修正的最新值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review A
Physical Review A 物理-光学
CiteScore
5.40
自引率
24.10%
发文量
0
审稿时长
2.2 months
期刊介绍: Physical Review A (PRA) publishes important developments in the rapidly evolving areas of atomic, molecular, and optical (AMO) physics, quantum information, and related fundamental concepts. PRA covers atomic, molecular, and optical physics, foundations of quantum mechanics, and quantum information, including: -Fundamental concepts -Quantum information -Atomic and molecular structure and dynamics; high-precision measurement -Atomic and molecular collisions and interactions -Atomic and molecular processes in external fields, including interactions with strong fields and short pulses -Matter waves and collective properties of cold atoms and molecules -Quantum optics, physics of lasers, nonlinear optics, and classical optics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信