Jiawen Pan , Jiaqi Geng , Qunwei Guo , Lu Zou , Bo Chi , Jian Pu
{"title":"Insight into insulation degradation mechanism of Al2O3 involved with positive and negative defects","authors":"Jiawen Pan , Jiaqi Geng , Qunwei Guo , Lu Zou , Bo Chi , Jian Pu","doi":"10.1016/j.ceramint.2024.09.241","DOIUrl":null,"url":null,"abstract":"<div><div>Al<sub>2</sub>O<sub>3</sub> with the desired electrical insulating properties and thermal shock resistivity has been extensively applied in the field of solid oxide fuel cells and oxygen sensors. However, degradation of the insulating Al<sub>2</sub>O<sub>3</sub> layer is an intractable issue in practical applications. In this study, different point defect structures of Al<sub>2</sub>O<sub>3</sub> were realized with the substitutional doping effect of ZrO<sub>2</sub> and MgO. The MgO dopant provides positively charged oxygen vacancies, whereas the ZrO<sub>2</sub> dopant tends to trigger negatively charged vacancy formation at Al<sup>3+</sup> sites. The oxygen vacancy concentration of Al<sub>2</sub>O<sub>3</sub> exhibits the following trend: MgO-doped Al<sub>2</sub>O<sub>3</sub> > Al<sub>2</sub>O<sub>3</sub> > ZrO<sub>2</sub>-doped Al<sub>2</sub>O<sub>3</sub>. Furthermore, the densification morphology, insulating properties, and oxygen vacancy migration of Al<sub>2</sub>O<sub>3</sub> have been confirmed to be largely affected by the extrinsic factors. This study indicates that oxygen vacancy migration depends on the applied electric field at high temperatures. As the voltage and temperature increase, oxygen vacancy migration shows obvious electric-field-dependent characteristics, and its aggregation macroscopically shows hole defects. The defect position of Al<sub>2</sub>O<sub>3</sub> is nonstoichiometric Al<sub>2</sub>O<sub>3-x</sub> with poor crystallinity. Therefore, it is believed that the oxygen vacancy migration triggered by the second phase directly determines the insulation performance and causes the degradation of Al<sub>2</sub>O<sub>3</sub> materials.</div></div>","PeriodicalId":267,"journal":{"name":"Ceramics International","volume":"50 23","pages":"Pages 49003-49010"},"PeriodicalIF":5.1000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0272884224042494","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Al2O3 with the desired electrical insulating properties and thermal shock resistivity has been extensively applied in the field of solid oxide fuel cells and oxygen sensors. However, degradation of the insulating Al2O3 layer is an intractable issue in practical applications. In this study, different point defect structures of Al2O3 were realized with the substitutional doping effect of ZrO2 and MgO. The MgO dopant provides positively charged oxygen vacancies, whereas the ZrO2 dopant tends to trigger negatively charged vacancy formation at Al3+ sites. The oxygen vacancy concentration of Al2O3 exhibits the following trend: MgO-doped Al2O3 > Al2O3 > ZrO2-doped Al2O3. Furthermore, the densification morphology, insulating properties, and oxygen vacancy migration of Al2O3 have been confirmed to be largely affected by the extrinsic factors. This study indicates that oxygen vacancy migration depends on the applied electric field at high temperatures. As the voltage and temperature increase, oxygen vacancy migration shows obvious electric-field-dependent characteristics, and its aggregation macroscopically shows hole defects. The defect position of Al2O3 is nonstoichiometric Al2O3-x with poor crystallinity. Therefore, it is believed that the oxygen vacancy migration triggered by the second phase directly determines the insulation performance and causes the degradation of Al2O3 materials.
期刊介绍:
Ceramics International covers the science of advanced ceramic materials. The journal encourages contributions that demonstrate how an understanding of the basic chemical and physical phenomena may direct materials design and stimulate ideas for new or improved processing techniques, in order to obtain materials with desired structural features and properties.
Ceramics International covers oxide and non-oxide ceramics, functional glasses, glass ceramics, amorphous inorganic non-metallic materials (and their combinations with metal and organic materials), in the form of particulates, dense or porous bodies, thin/thick films and laminated, graded and composite structures. Process related topics such as ceramic-ceramic joints or joining ceramics with dissimilar materials, as well as surface finishing and conditioning are also covered. Besides traditional processing techniques, manufacturing routes of interest include innovative procedures benefiting from externally applied stresses, electromagnetic fields and energetic beams, as well as top-down and self-assembly nanotechnology approaches. In addition, the journal welcomes submissions on bio-inspired and bio-enabled materials designs, experimentally validated multi scale modelling and simulation for materials design, and the use of the most advanced chemical and physical characterization techniques of structure, properties and behaviour.
Technologically relevant low-dimensional systems are a particular focus of Ceramics International. These include 0, 1 and 2-D nanomaterials (also covering CNTs, graphene and related materials, and diamond-like carbons), their nanocomposites, as well as nano-hybrids and hierarchical multifunctional nanostructures that might integrate molecular, biological and electronic components.