Jitai Han , Sida Tang , Jiahui Guan , Yuyi Mao , Kui Zhu , Yin Li , Peng Li
{"title":"Microstructure and wear property of (TiN + NbC) double ceramic phase-reinforced in FeCrNiCoAl high-entropy alloy coating fabricated by laser cladding","authors":"Jitai Han , Sida Tang , Jiahui Guan , Yuyi Mao , Kui Zhu , Yin Li , Peng Li","doi":"10.1016/j.ceramint.2024.09.248","DOIUrl":null,"url":null,"abstract":"<div><div>This study delves into the influence of TiN and NbC ceramic particles on the phase structure, grain organization, microhardness, and wear resistance of FeCoNiCrAl High-Entropy Alloy (HEA) composite coatings produced through laser cladding. The integration of ceramic particles induced a dual BCC solid-solution phase structure (B2+BCC), with the formation of a TiNb phase upon the melting and interaction of TiN and NbC in the melt pool. The ceramic particles significantly modified the grain structure of the HEA coatings, disrupting the Columnar-to-Equiaxed Transition (CET) and favoring the emergence of equiaxed grains. The TiN particles induced a substantial refinement of grain size, albeit unevenly, while NbC had a milder effect. The combined presence of TiN and NbC particles resulted in a more uniform grain refinement, enhancing the mechanical properties of the coatings. Notably, the (TiN + NbC)/HEAs composite coating demonstrated superior mechanical performance under the synergistic effect of both ceramic particles. The average microhardness value increased by 55.80 % compared to 17-4Ph stainless steel, and the wear rate was reduced by 88.38 %, with the wear mechanism primarily involving abrasive and oxidative wear.</div></div>","PeriodicalId":267,"journal":{"name":"Ceramics International","volume":"50 23","pages":"Pages 49066-49084"},"PeriodicalIF":5.1000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S027288422404255X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study delves into the influence of TiN and NbC ceramic particles on the phase structure, grain organization, microhardness, and wear resistance of FeCoNiCrAl High-Entropy Alloy (HEA) composite coatings produced through laser cladding. The integration of ceramic particles induced a dual BCC solid-solution phase structure (B2+BCC), with the formation of a TiNb phase upon the melting and interaction of TiN and NbC in the melt pool. The ceramic particles significantly modified the grain structure of the HEA coatings, disrupting the Columnar-to-Equiaxed Transition (CET) and favoring the emergence of equiaxed grains. The TiN particles induced a substantial refinement of grain size, albeit unevenly, while NbC had a milder effect. The combined presence of TiN and NbC particles resulted in a more uniform grain refinement, enhancing the mechanical properties of the coatings. Notably, the (TiN + NbC)/HEAs composite coating demonstrated superior mechanical performance under the synergistic effect of both ceramic particles. The average microhardness value increased by 55.80 % compared to 17-4Ph stainless steel, and the wear rate was reduced by 88.38 %, with the wear mechanism primarily involving abrasive and oxidative wear.
期刊介绍:
Ceramics International covers the science of advanced ceramic materials. The journal encourages contributions that demonstrate how an understanding of the basic chemical and physical phenomena may direct materials design and stimulate ideas for new or improved processing techniques, in order to obtain materials with desired structural features and properties.
Ceramics International covers oxide and non-oxide ceramics, functional glasses, glass ceramics, amorphous inorganic non-metallic materials (and their combinations with metal and organic materials), in the form of particulates, dense or porous bodies, thin/thick films and laminated, graded and composite structures. Process related topics such as ceramic-ceramic joints or joining ceramics with dissimilar materials, as well as surface finishing and conditioning are also covered. Besides traditional processing techniques, manufacturing routes of interest include innovative procedures benefiting from externally applied stresses, electromagnetic fields and energetic beams, as well as top-down and self-assembly nanotechnology approaches. In addition, the journal welcomes submissions on bio-inspired and bio-enabled materials designs, experimentally validated multi scale modelling and simulation for materials design, and the use of the most advanced chemical and physical characterization techniques of structure, properties and behaviour.
Technologically relevant low-dimensional systems are a particular focus of Ceramics International. These include 0, 1 and 2-D nanomaterials (also covering CNTs, graphene and related materials, and diamond-like carbons), their nanocomposites, as well as nano-hybrids and hierarchical multifunctional nanostructures that might integrate molecular, biological and electronic components.