Superfluid–Bose-glass transition in a system of disordered bosons with long-range hopping in one dimension

IF 2.9 2区 物理与天体物理 Q2 Physics and Astronomy
Nicolas Dupuis
{"title":"Superfluid–Bose-glass transition in a system of disordered bosons with long-range hopping in one dimension","authors":"Nicolas Dupuis","doi":"10.1103/physreva.110.033315","DOIUrl":null,"url":null,"abstract":"We study the superfluid–Bose-glass transition in a one-dimensional lattice boson model with power-law decaying hopping amplitude <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>t</mi><mrow><mi>i</mi><mo>−</mo><mi>j</mi></mrow></msub><mo>∼</mo><mn>1</mn><mo>/</mo><msup><mrow><mo>|</mo><mi>i</mi><mo>−</mo><mi>j</mi><mo>|</mo></mrow><mi>α</mi></msup></mrow></math>, using bosonization and the nonperturbative functional renormalization group (FRG). When <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>α</mi></math> is smaller than a critical value <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>α</mi><mi>c</mi></msub><mo>&lt;</mo><mn>3</mn></mrow></math>, the U(1) symmetry is spontaneously broken, which leads to a density mode with nonlinear dispersion and dynamical exponent <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>z</mi><mo>=</mo><mo>(</mo><mi>α</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></mrow></math>; the superfluid phase is then stable for sufficiently weak disorder, contrary to the case of short-range hopping where disorder is a relevant perturbation when the Luttinger parameter is smaller than <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></math>. In the presence of disorder, however, long-range hopping has no effect in the infrared limit and the FRG flow eventually becomes similar to that of a boson system with short-range hopping. This implies that the superfluid phase, when stable, exhibits a density mode with linear dispersion (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>z</mi><mo>=</mo><mn>1</mn></mrow></math>) and the superfluid–Bose-glass transition remains in the Berezinskii-Kosterlitz-Thouless universality class, while the Bose-glass fixed point is insensitive to long-range hopping. We compare our findings with a recent numerical study.","PeriodicalId":20146,"journal":{"name":"Physical Review A","volume":"95 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review A","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreva.110.033315","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We study the superfluid–Bose-glass transition in a one-dimensional lattice boson model with power-law decaying hopping amplitude tij1/|ij|α, using bosonization and the nonperturbative functional renormalization group (FRG). When α is smaller than a critical value αc<3, the U(1) symmetry is spontaneously broken, which leads to a density mode with nonlinear dispersion and dynamical exponent z=(α1)/2; the superfluid phase is then stable for sufficiently weak disorder, contrary to the case of short-range hopping where disorder is a relevant perturbation when the Luttinger parameter is smaller than 3/2. In the presence of disorder, however, long-range hopping has no effect in the infrared limit and the FRG flow eventually becomes similar to that of a boson system with short-range hopping. This implies that the superfluid phase, when stable, exhibits a density mode with linear dispersion (z=1) and the superfluid–Bose-glass transition remains in the Berezinskii-Kosterlitz-Thouless universality class, while the Bose-glass fixed point is insensitive to long-range hopping. We compare our findings with a recent numerical study.

Abstract Image

一维长程跳变无序玻色子系统中的超流体-玻色玻璃转变
我们利用玻色子化和非微扰函数重正化群(FRG)研究了一维晶格玻色子模型中的超流体-玻色玻璃转变,该模型具有幂律衰减的跳变振幅ti-j∼1/|i-j|α。当α小于临界值αc<3时,U(1)对称性被自发打破,从而产生具有非线性色散和动力学指数z=(α-1)/2的密度模式;超流体相在足够弱的无序状态下是稳定的,这与短程跳跃的情况相反,当鲁丁格参数小于3/2时,无序是一个相关的扰动。然而,在存在无序的情况下,长程跳变在红外极限没有影响,FRG流最终变得与具有短程跳变的玻色子系统相似。这意味着超流体相在稳定时表现出一种线性弥散的密度模式(z=1),超流体-玻色玻璃转变仍然处于别列津斯基-科斯特利兹-无普适性类别中,而玻色玻璃定点对长程跳跃不敏感。我们将我们的发现与最近的一项数值研究进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review A
Physical Review A 物理-光学
CiteScore
5.40
自引率
24.10%
发文量
0
审稿时长
2.2 months
期刊介绍: Physical Review A (PRA) publishes important developments in the rapidly evolving areas of atomic, molecular, and optical (AMO) physics, quantum information, and related fundamental concepts. PRA covers atomic, molecular, and optical physics, foundations of quantum mechanics, and quantum information, including: -Fundamental concepts -Quantum information -Atomic and molecular structure and dynamics; high-precision measurement -Atomic and molecular collisions and interactions -Atomic and molecular processes in external fields, including interactions with strong fields and short pulses -Matter waves and collective properties of cold atoms and molecules -Quantum optics, physics of lasers, nonlinear optics, and classical optics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信