R. Gago , S. Prucnal , J. Azpeitia , I. Jiménez , L. Álvarez-Fraga
{"title":"Phase selectivity upon flash-lamp annealing of sputter deposited amorphous titanium oxide films","authors":"R. Gago , S. Prucnal , J. Azpeitia , I. Jiménez , L. Álvarez-Fraga","doi":"10.1016/j.ceramint.2024.09.252","DOIUrl":null,"url":null,"abstract":"<div><div>We report the impact of flash-lamp-annealing (FLA) on the structural evolution of amorphous titania (TiO<sub>2</sub>) films produced by DC reactive magnetron sputtering. TiO<sub>2</sub> films were grown at room-temperature at different oxygen partial pressure (<em>P</em><sub><em>O2</em></sub>) and subsequently annealed as a function of the FLA energy density. X-ray diffraction confirms that FLA induces phase formation from the initial amorphous state with a general transition from anatase to rutile by increasing the FLA energy density (temperature). Interestingly, the transformation onset of anatase to rutile is achieved at lower energy densities for higher <em>P</em><sub><em>O2</em></sub>. On the contrary, films with a highly resilient anatase phase can be produced at relatively low <em>P</em><sub><em>O2</em></sub>. A detailed analysis of the pristine amorphous structure carried out by X-ray absorption near-edge structure indicates the role of oxygen sites in the observed phase transformation. In particular, oxygen vacancies seem to stabilize the anatase phase at high temperatures. The results show the relevance of subtle changes in the initial amorphous structure for phase selectivity in TiO<sub>2</sub> films upon FLA.</div></div>","PeriodicalId":267,"journal":{"name":"Ceramics International","volume":"50 23","pages":"Pages 49112-49118"},"PeriodicalIF":5.1000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0272884224042603","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
We report the impact of flash-lamp-annealing (FLA) on the structural evolution of amorphous titania (TiO2) films produced by DC reactive magnetron sputtering. TiO2 films were grown at room-temperature at different oxygen partial pressure (PO2) and subsequently annealed as a function of the FLA energy density. X-ray diffraction confirms that FLA induces phase formation from the initial amorphous state with a general transition from anatase to rutile by increasing the FLA energy density (temperature). Interestingly, the transformation onset of anatase to rutile is achieved at lower energy densities for higher PO2. On the contrary, films with a highly resilient anatase phase can be produced at relatively low PO2. A detailed analysis of the pristine amorphous structure carried out by X-ray absorption near-edge structure indicates the role of oxygen sites in the observed phase transformation. In particular, oxygen vacancies seem to stabilize the anatase phase at high temperatures. The results show the relevance of subtle changes in the initial amorphous structure for phase selectivity in TiO2 films upon FLA.
期刊介绍:
Ceramics International covers the science of advanced ceramic materials. The journal encourages contributions that demonstrate how an understanding of the basic chemical and physical phenomena may direct materials design and stimulate ideas for new or improved processing techniques, in order to obtain materials with desired structural features and properties.
Ceramics International covers oxide and non-oxide ceramics, functional glasses, glass ceramics, amorphous inorganic non-metallic materials (and their combinations with metal and organic materials), in the form of particulates, dense or porous bodies, thin/thick films and laminated, graded and composite structures. Process related topics such as ceramic-ceramic joints or joining ceramics with dissimilar materials, as well as surface finishing and conditioning are also covered. Besides traditional processing techniques, manufacturing routes of interest include innovative procedures benefiting from externally applied stresses, electromagnetic fields and energetic beams, as well as top-down and self-assembly nanotechnology approaches. In addition, the journal welcomes submissions on bio-inspired and bio-enabled materials designs, experimentally validated multi scale modelling and simulation for materials design, and the use of the most advanced chemical and physical characterization techniques of structure, properties and behaviour.
Technologically relevant low-dimensional systems are a particular focus of Ceramics International. These include 0, 1 and 2-D nanomaterials (also covering CNTs, graphene and related materials, and diamond-like carbons), their nanocomposites, as well as nano-hybrids and hierarchical multifunctional nanostructures that might integrate molecular, biological and electronic components.