Biologically active dual functional zinc-doped biomass-derived carbon dots†

Mohammad Tariq, Mo Ahamad Khan, Hammad Hasan, Sangeeta Yadav, Amaresh Kumar Sahoo and Md Palashuddin Sk
{"title":"Biologically active dual functional zinc-doped biomass-derived carbon dots†","authors":"Mohammad Tariq, Mo Ahamad Khan, Hammad Hasan, Sangeeta Yadav, Amaresh Kumar Sahoo and Md Palashuddin Sk","doi":"10.1039/D4SU00439F","DOIUrl":null,"url":null,"abstract":"<p >The resistance of bacteria to antibiotics poses a significant challenge in the current global landscape. Despite this urgency, the pace of drug development has not matched the pressing need. Addressing this gap, we have developed zinc-doped carbon dots (Zn-Cdots) using biomass as a carbon source by a simple, and eco-friendly hydrothermal method to treat bacterial infection. Plant-derived biomass serves as an excellent source of various bioactive molecules, making it a viable carbon source for synthesizing Zn-Cdots. The characterization of Zn-Cdots was performed using multiple techniques, including UV-Visible spectroscopy, photoluminescence spectroscopy, TEM analysis, XRD, FTIR and XPS. The Zn-Cdots exhibit superior antibacterial properties in combating Gram-negative and Gram-positive bacterial strains, specifically <em>Serratia marcescens</em> and <em>Staphylococcus aureus</em> compared to the precursor biomass extract. Additionally, ROS measurements revealed the antioxidant property of Zn-Cdots, while agarose gel electrophoresis studies confirmed that the interaction between pDNA and Zn-Cdots heightened the antibacterial activity of Zn-Cdots. Moreover, the ABTS assay and the TMB assay both validated the antioxidant activity of Zn-Cdots, revealing high efficacy in scavenging free radicals and further highlighting its potential in mitigating oxidative stress alongside potent antibacterial efficacy.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 10","pages":" 3114-3122"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/su/d4su00439f?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/su/d4su00439f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The resistance of bacteria to antibiotics poses a significant challenge in the current global landscape. Despite this urgency, the pace of drug development has not matched the pressing need. Addressing this gap, we have developed zinc-doped carbon dots (Zn-Cdots) using biomass as a carbon source by a simple, and eco-friendly hydrothermal method to treat bacterial infection. Plant-derived biomass serves as an excellent source of various bioactive molecules, making it a viable carbon source for synthesizing Zn-Cdots. The characterization of Zn-Cdots was performed using multiple techniques, including UV-Visible spectroscopy, photoluminescence spectroscopy, TEM analysis, XRD, FTIR and XPS. The Zn-Cdots exhibit superior antibacterial properties in combating Gram-negative and Gram-positive bacterial strains, specifically Serratia marcescens and Staphylococcus aureus compared to the precursor biomass extract. Additionally, ROS measurements revealed the antioxidant property of Zn-Cdots, while agarose gel electrophoresis studies confirmed that the interaction between pDNA and Zn-Cdots heightened the antibacterial activity of Zn-Cdots. Moreover, the ABTS assay and the TMB assay both validated the antioxidant activity of Zn-Cdots, revealing high efficacy in scavenging free radicals and further highlighting its potential in mitigating oxidative stress alongside potent antibacterial efficacy.

Abstract Image

生物活性双功能掺锌生物质衍生碳点
细菌对抗生素的耐药性是当前全球面临的一项重大挑战。尽管情况紧急,但药物开发的速度却无法满足迫切的需求。针对这一差距,我们采用简单、环保的水热法,以生物质为碳源,开发出了掺锌碳点(Zn-Cdots),用于治疗细菌感染。植物提取的生物质是各种生物活性分子的绝佳来源,因此是合成锌掺杂碳点的可行碳源。Zn-Cdots 的表征采用了多种技术,包括紫外可见光谱、光致发光光谱、TEM 分析、XRD、傅立叶变换红外光谱和 XPS。与前体生物质提取物相比,Zn-Cdots 在对抗革兰氏阴性和革兰氏阳性细菌菌株(特别是大肠埃希氏菌和金黄色葡萄球菌)方面表现出卓越的抗菌特性。此外,ROS 测量显示了 Zn-Cdots 的抗氧化特性,而琼脂糖凝胶电泳研究则证实 pDNA 与 Zn-Cdots 之间的相互作用增强了 Zn-Cdots 的抗菌活性。此外,ABTS 试验和 TMB 试验都验证了 Zn-Cdots 的抗氧化活性,表明其在清除自由基方面具有很高的功效,并进一步凸显了其在减轻氧化应激和有效抗菌方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信