Elizabeth Rangel-Rangel, Beatriz Fuerte-Díez, Marta Iglesias and Eva M. Maya
{"title":"Insertion of CO2 to 2-methyl furoate promoted by a cobalt hypercrosslinked polymer catalyst to obtain a monomer of CO2-based biopolyesters†","authors":"Elizabeth Rangel-Rangel, Beatriz Fuerte-Díez, Marta Iglesias and Eva M. Maya","doi":"10.1039/D4SU00426D","DOIUrl":null,"url":null,"abstract":"<p >2,5-Furan Dicarboxylic methyl Ester (FDME), a highly valued monomer for the synthesis of biobased polyesters, has been prepared through a new synthetic strategy that consists of the direct carboxylation of methyl furoate in two steps: the first one involves a solvent-free reaction using a moderate CO<small><sub>2</sub></small> pressure (10 bar), a base (Cs<small><sub>2</sub></small>CO<small><sub>3</sub></small>) and a cobalt-based heterogeneous catalyst (HCP-Salphen-Co) for 6 h, which was prepared using mechanochemical polymerization. The second step consists of an acid esterification using standard conditions. The CO<small><sub>2</sub></small>-based FDME synthesized with this strategy was successfully reacted with a diol derived from vanillin, thus obtaining a CO<small><sub>2</sub></small> and a completely bio-based polyester which exhibited high thermal stability with a starting degradation temperature of 250 °C and a glass transition temperature of 104 °C.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 10","pages":" 2896-2902"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/su/d4su00426d?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/su/d4su00426d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
2,5-Furan Dicarboxylic methyl Ester (FDME), a highly valued monomer for the synthesis of biobased polyesters, has been prepared through a new synthetic strategy that consists of the direct carboxylation of methyl furoate in two steps: the first one involves a solvent-free reaction using a moderate CO2 pressure (10 bar), a base (Cs2CO3) and a cobalt-based heterogeneous catalyst (HCP-Salphen-Co) for 6 h, which was prepared using mechanochemical polymerization. The second step consists of an acid esterification using standard conditions. The CO2-based FDME synthesized with this strategy was successfully reacted with a diol derived from vanillin, thus obtaining a CO2 and a completely bio-based polyester which exhibited high thermal stability with a starting degradation temperature of 250 °C and a glass transition temperature of 104 °C.