{"title":"Preparation of multifunctional flame retardant composite wood by doping poplar cell walls with metal phytates","authors":"Hao Shen, Yangguang Liu, Peiran Wang, Shenglei Qin, Xin Shi, Demiao Chu, Shengquan Liu","doi":"10.1007/s10570-024-06100-7","DOIUrl":null,"url":null,"abstract":"<div><p>Phytic acid as an efficient, green and renewable bio-based flame retardant. However, in view of the large number of toxic fumes generated during combustion and the easy loss of flame retardants, to tackle these issues, the current study employed a straightforward two-step process to generate phytate metal salt wood composites (PAN-M, M = Mg, Cu, Fe, Ai and Ni) in cell walls. Compared with natural wood (Control), PAN-M has good leaching resistance of 15~50%, lower hygroscopicity of 15~30% and improved mechanical strength. The total heat release and smoke emission of PAN-Cu are reduced by 34.54% and 83.05% respectively, the LOI of PAN-Cu is increased by 117%, the smoke density SDR is only 8.38 and the weight gain is 16.9%. This is mainly due to the apparent surface coke protection of metal phytates and catalytic graphitisation of solid residues by metal ions. The improved carbon layer plays an effective insulating role, limiting flue gas emissions, flame retardant loss and water contact. In addition, results show that PAN-Cu can significantly enhance the dehydration effect of carbon compared to other metal ions. Therefore, PAN-M is an efficient, green and sustainable flame retardant for wood.</p></div>","PeriodicalId":511,"journal":{"name":"Cellulose","volume":"31 15","pages":"9435 - 9454"},"PeriodicalIF":4.9000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10570-024-06100-7","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0
Abstract
Phytic acid as an efficient, green and renewable bio-based flame retardant. However, in view of the large number of toxic fumes generated during combustion and the easy loss of flame retardants, to tackle these issues, the current study employed a straightforward two-step process to generate phytate metal salt wood composites (PAN-M, M = Mg, Cu, Fe, Ai and Ni) in cell walls. Compared with natural wood (Control), PAN-M has good leaching resistance of 15~50%, lower hygroscopicity of 15~30% and improved mechanical strength. The total heat release and smoke emission of PAN-Cu are reduced by 34.54% and 83.05% respectively, the LOI of PAN-Cu is increased by 117%, the smoke density SDR is only 8.38 and the weight gain is 16.9%. This is mainly due to the apparent surface coke protection of metal phytates and catalytic graphitisation of solid residues by metal ions. The improved carbon layer plays an effective insulating role, limiting flue gas emissions, flame retardant loss and water contact. In addition, results show that PAN-Cu can significantly enhance the dehydration effect of carbon compared to other metal ions. Therefore, PAN-M is an efficient, green and sustainable flame retardant for wood.
期刊介绍:
Cellulose is an international journal devoted to the dissemination of research and scientific and technological progress in the field of cellulose and related naturally occurring polymers. The journal is concerned with the pure and applied science of cellulose and related materials, and also with the development of relevant new technologies. This includes the chemistry, biochemistry, physics and materials science of cellulose and its sources, including wood and other biomass resources, and their derivatives. Coverage extends to the conversion of these polymers and resources into manufactured goods, such as pulp, paper, textiles, and manufactured as well natural fibers, and to the chemistry of materials used in their processing. Cellulose publishes review articles, research papers, and technical notes.