{"title":"A molecular dynamics study of the effects of silane and cellulose nanocrystals at a glass fiber and epoxy interphase","authors":"Ejaz Haque, Kyriaki Kalaitzidou, Xiawa Wu","doi":"10.1007/s10570-024-06170-7","DOIUrl":null,"url":null,"abstract":"<p>Due to commonly observed adhesive fracture, the interphase regions between fibers and matrix have often been considered a critical design factor in polymer matrix composites. This study uses molecular dynamics simulation to explore the effects of two modifications at a glass fiber and epoxy interphase by adding a silane sizing and a cellulose nanocrystal particle. The interphase thickness increases by 1 nm and by 3.8 nm, respectively, when silane coating, a combination of silane and a 36-chain cellulose nanocrystal are added. Furthermore, the shear modulus and strength of the interphase increase by around 120% and 415% in the case of silane and by about 70% and 240% in the case of a cellulose nanocrystal. When both cellulose nanocrystal and silane are added at interphase, the shear modulus and strength increase by approximately 125% and 265%, respectively. The cellulose nanocrystal particle is physically absorbed on the glass fiber surface without silane, and it is physically confined in a region created by covalent bonds between silane and epoxy when silane is present. In both cases, a cellulose nanocrystal particle increases the nanoscale roughness at a glass fiber surface, leading to improved shear properties at the interphase.</p>","PeriodicalId":511,"journal":{"name":"Cellulose","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s10570-024-06170-7","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0
Abstract
Due to commonly observed adhesive fracture, the interphase regions between fibers and matrix have often been considered a critical design factor in polymer matrix composites. This study uses molecular dynamics simulation to explore the effects of two modifications at a glass fiber and epoxy interphase by adding a silane sizing and a cellulose nanocrystal particle. The interphase thickness increases by 1 nm and by 3.8 nm, respectively, when silane coating, a combination of silane and a 36-chain cellulose nanocrystal are added. Furthermore, the shear modulus and strength of the interphase increase by around 120% and 415% in the case of silane and by about 70% and 240% in the case of a cellulose nanocrystal. When both cellulose nanocrystal and silane are added at interphase, the shear modulus and strength increase by approximately 125% and 265%, respectively. The cellulose nanocrystal particle is physically absorbed on the glass fiber surface without silane, and it is physically confined in a region created by covalent bonds between silane and epoxy when silane is present. In both cases, a cellulose nanocrystal particle increases the nanoscale roughness at a glass fiber surface, leading to improved shear properties at the interphase.
期刊介绍:
Cellulose is an international journal devoted to the dissemination of research and scientific and technological progress in the field of cellulose and related naturally occurring polymers. The journal is concerned with the pure and applied science of cellulose and related materials, and also with the development of relevant new technologies. This includes the chemistry, biochemistry, physics and materials science of cellulose and its sources, including wood and other biomass resources, and their derivatives. Coverage extends to the conversion of these polymers and resources into manufactured goods, such as pulp, paper, textiles, and manufactured as well natural fibers, and to the chemistry of materials used in their processing. Cellulose publishes review articles, research papers, and technical notes.