Emily J. Philpott, Mohammadmahdi Bahrami, Mahta Sardroodian, David G. Behm
{"title":"The Effects of High-Intensity, Short-Duration and Low-Intensity, Long-Duration Hamstrings Static Stretching on Contralateral Limb Performance","authors":"Emily J. Philpott, Mohammadmahdi Bahrami, Mahta Sardroodian, David G. Behm","doi":"10.3390/sports12090257","DOIUrl":null,"url":null,"abstract":"Introduction: Increases in contralateral range of motion (ROM) have been shown following acute high-intensity and high-duration static stretching (SS) with no significant change in contralateral force, power, and muscle activation. There are currently no studies comparing the effects of a high-intensity, short-duration (HISD) or low-intensity, long-duration (LILD) SS on contralateral performance. Purpose: The aim of this study was to examine how HISD and LILD SS of the dominant leg hamstrings influence contralateral limb performance. Methods: Sixteen trained participants (eight females, eight males) completed three SS interventions of the dominant leg hamstrings; (1) HISD (6 × 10 s at maximal point of discomfort), (2) LILD (6 × 30 s at initial point of discomfort), and (3) control. Dominant and non-dominant ROM, maximal voluntary isometric contraction (MVIC) forces, muscle activation (electromyography (EMG)), and unilateral CMJ and DJ heights were recorded pre-test and 1 min post-test. Results: There were no significant contralateral ROM or performance changes. Following the HISD condition, the post-test ROM for the stretched leg (110.6 ± 12.6°) exceeded the pre-test (106.0 ± 9.0°) by a small magnitude effect of 4.2% (p = 0.008, d = 0.42). With LILD, the stretched leg post-test (112.2 ± 16.5°) exceeded (2.6%, p = 0.06, d = 0.18) the pre-test ROM (109.3 ± 16.2°) by a non-significant, trivial magnitude. There were large magnitude impairments, evidenced by main effects for testing time for force, instantaneous strength, and associated EMG. A significant ROM interaction (p = 0.02) showed that with LILD, the stretched leg significantly (p = 0.05) exceeded the contralateral leg by 13.4% post-test. Conclusions: The results showing no significant increase in contralateral ROM with either HISD or LILD SS, suggesting the interventions may not have been effective in promoting crossover effects.","PeriodicalId":53303,"journal":{"name":"Sports","volume":"3 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/sports12090257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Increases in contralateral range of motion (ROM) have been shown following acute high-intensity and high-duration static stretching (SS) with no significant change in contralateral force, power, and muscle activation. There are currently no studies comparing the effects of a high-intensity, short-duration (HISD) or low-intensity, long-duration (LILD) SS on contralateral performance. Purpose: The aim of this study was to examine how HISD and LILD SS of the dominant leg hamstrings influence contralateral limb performance. Methods: Sixteen trained participants (eight females, eight males) completed three SS interventions of the dominant leg hamstrings; (1) HISD (6 × 10 s at maximal point of discomfort), (2) LILD (6 × 30 s at initial point of discomfort), and (3) control. Dominant and non-dominant ROM, maximal voluntary isometric contraction (MVIC) forces, muscle activation (electromyography (EMG)), and unilateral CMJ and DJ heights were recorded pre-test and 1 min post-test. Results: There were no significant contralateral ROM or performance changes. Following the HISD condition, the post-test ROM for the stretched leg (110.6 ± 12.6°) exceeded the pre-test (106.0 ± 9.0°) by a small magnitude effect of 4.2% (p = 0.008, d = 0.42). With LILD, the stretched leg post-test (112.2 ± 16.5°) exceeded (2.6%, p = 0.06, d = 0.18) the pre-test ROM (109.3 ± 16.2°) by a non-significant, trivial magnitude. There were large magnitude impairments, evidenced by main effects for testing time for force, instantaneous strength, and associated EMG. A significant ROM interaction (p = 0.02) showed that with LILD, the stretched leg significantly (p = 0.05) exceeded the contralateral leg by 13.4% post-test. Conclusions: The results showing no significant increase in contralateral ROM with either HISD or LILD SS, suggesting the interventions may not have been effective in promoting crossover effects.