Substitutional Cu doping at the cation sites in Ba2YNbO6 toward improved visible-light photoactivity—A first-principles HSE06 study

Sankha Ghosh
{"title":"Substitutional Cu doping at the cation sites in Ba2YNbO6 toward improved visible-light photoactivity—A first-principles HSE06 study","authors":"Sankha Ghosh","doi":"10.1063/5.0221428","DOIUrl":null,"url":null,"abstract":"Artificial photosynthesis holds immense promise for sustainable clean energy harvesting, with recent strides in material engineering with the earth abundant elements enabling efficient utilization of the visible solar spectrum for photoelectrochemical catalytic water splitting. Here, we have investigated the impact of substitutional Cu doping at all three cation sites in Ba2YNbO6 (BYN) using density functional theory calculations at the Heyd-Scuseria-Ernzerhof-06 level. One of the key findings is that the defect formation energy follows the hierarchy Nb > Ba > Y. The presence of an oxygen vacancy (OV) enhances the co-solubility of Cu substitution of Nb, particularly when placed outside the CuO6 unit, while it has a contrary effect for Y substitution. Cu replacement reduces the bandgap as Nb > Y ≫ Ba vis-à-vis pure BYN, while extending it into the visible part of the solar spectrum for Nb and Y replacement cases, albeit with OV causing a slight blue shift to them, without reducing the oxidation state of Cu due to strong charge-delocalization. Cu doping at Y and Nb sites retains the direct band transition character of BYN, a feature removed by OV. While all the bare Cu doped systems exhibit formation of a weak electron polaron, the placement of OV tends to annihilate this except for the system comprising first nearest neighbor placement of an OV relative to the Cu substitution at an Nb site. Notably, Cu doping at the Nb site significantly enhances optical activity, particularly ∼2.0–2.5 eV, resulting in promising candidates for photoelectrochemical catalysts.","PeriodicalId":501648,"journal":{"name":"The Journal of Chemical Physics","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Chemical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0221428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial photosynthesis holds immense promise for sustainable clean energy harvesting, with recent strides in material engineering with the earth abundant elements enabling efficient utilization of the visible solar spectrum for photoelectrochemical catalytic water splitting. Here, we have investigated the impact of substitutional Cu doping at all three cation sites in Ba2YNbO6 (BYN) using density functional theory calculations at the Heyd-Scuseria-Ernzerhof-06 level. One of the key findings is that the defect formation energy follows the hierarchy Nb > Ba > Y. The presence of an oxygen vacancy (OV) enhances the co-solubility of Cu substitution of Nb, particularly when placed outside the CuO6 unit, while it has a contrary effect for Y substitution. Cu replacement reduces the bandgap as Nb > Y ≫ Ba vis-à-vis pure BYN, while extending it into the visible part of the solar spectrum for Nb and Y replacement cases, albeit with OV causing a slight blue shift to them, without reducing the oxidation state of Cu due to strong charge-delocalization. Cu doping at Y and Nb sites retains the direct band transition character of BYN, a feature removed by OV. While all the bare Cu doped systems exhibit formation of a weak electron polaron, the placement of OV tends to annihilate this except for the system comprising first nearest neighbor placement of an OV relative to the Cu substitution at an Nb site. Notably, Cu doping at the Nb site significantly enhances optical activity, particularly ∼2.0–2.5 eV, resulting in promising candidates for photoelectrochemical catalysts.
在 Ba2YNbO6 的阳离子位点掺杂铜以提高可见光光活性--第一原理 HSE06 研究
人工光合作用为可持续的清洁能源采集带来了巨大的前景,最近在材料工程中使用地球上丰富的元素取得了长足的进步,从而能够有效地利用可见太阳光谱进行光电化学催化水分离。在此,我们利用海德-斯库塞里亚-恩泽霍夫-06 水平的密度泛函理论计算,研究了在 Ba2YNbO6(BYN)的所有三个阳离子位点掺杂铜的影响。主要发现之一是缺陷形成能遵循 Nb > Ba > Y 的层次结构。氧空位(OV)的存在增强了 Cu 取代 Nb 的共溶性,尤其是当其位于 CuO6 单元之外时,而对 Y 取代则有相反的影响。与纯铍青铜相比,当 Nb > Y ≫ Ba 时,铜置换降低了带隙,而在 Nb 和 Y 置换的情况下,带隙扩展到了太阳光谱的可见光部分,尽管 OV 会导致它们发生轻微的蓝移,但不会因为强烈的电荷迁移而降低铜的氧化态。在 Y 和 Nb 位点掺入的铜保留了 BYN 的直接带过渡特性,而 OV 则消除了这一特性。虽然所有裸掺杂铜的体系都会形成微弱的电子极子,但除了在铌位点掺杂铜取代物的第一近邻位点掺杂 OV 的体系外,其他掺杂 OV 的体系都倾向于湮灭电子极子。值得注意的是,在铌位点掺入铜可显著提高光学活性,尤其是在 2.0-2.5 eV 之间,从而有望成为光电化学催化剂的候选物质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信