Identification and characterization of functional microRNAs and their significant targets in maize plants

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Abdul Baqi, Samiullah, Ghulam Mustafa Khan, Asadullah, Naqeebullah Khan, Attiq-Ur-Rehman, Alia Ahmed
{"title":"Identification and characterization of functional microRNAs and their significant targets in maize plants","authors":"Abdul Baqi, Samiullah, Ghulam Mustafa Khan, Asadullah, Naqeebullah Khan, Attiq-Ur-Rehman, Alia Ahmed","doi":"10.1007/s13562-024-00918-9","DOIUrl":null,"url":null,"abstract":"<p>Various metabolic and cell signaling processes influence the function of maize plant cells. miRNAs play numerous regulatory roles in regulating yield and protecting against various stressors. This study aims to identify and partially characterize some novel miRNAs in maize using in silico tools and provide a preliminary evaluation of their role. In this research, 20 novel conserved maize miRNAs belonging to 20 miRNA families were predicted using in silico tools and validated through RT-PCR. Consequently, 5850 different protein targets of these newly predicted miRNAs were identified via the psRNA Target approach. These targets included 20 significant ones involved in regulating metabolism, structural proteins, cell signaling proteins, and transportation factors. Moreover, the miRNA zma-miR5068 was predicted to be involved in the ubiquitin fusion protein process. Overall, this study examines novel maize miRNAs targeting several significant genes that could help manage the environment for better maize tolerance.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13562-024-00918-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Various metabolic and cell signaling processes influence the function of maize plant cells. miRNAs play numerous regulatory roles in regulating yield and protecting against various stressors. This study aims to identify and partially characterize some novel miRNAs in maize using in silico tools and provide a preliminary evaluation of their role. In this research, 20 novel conserved maize miRNAs belonging to 20 miRNA families were predicted using in silico tools and validated through RT-PCR. Consequently, 5850 different protein targets of these newly predicted miRNAs were identified via the psRNA Target approach. These targets included 20 significant ones involved in regulating metabolism, structural proteins, cell signaling proteins, and transportation factors. Moreover, the miRNA zma-miR5068 was predicted to be involved in the ubiquitin fusion protein process. Overall, this study examines novel maize miRNAs targeting several significant genes that could help manage the environment for better maize tolerance.

Abstract Image

玉米植株中功能性 microRNA 及其重要靶标的鉴定和表征
miRNAs在调节产量和抵御各种胁迫方面发挥着多种调控作用。本研究旨在利用硅学工具鉴定和部分描述玉米中的一些新型 miRNA,并对其作用进行初步评估。在这项研究中,利用硅学工具预测了属于 20 个 miRNA 家族的 20 个新型玉米保守 miRNA,并通过 RT-PCR 进行了验证。因此,通过psRNA靶标方法,确定了这些新预测的miRNA的5850个不同蛋白质靶标。这些靶标包括 20 个重要的靶标,涉及调节新陈代谢、结构蛋白、细胞信号蛋白和运输因子。此外,miRNA zma-miR5068 被预测参与泛素融合蛋白过程。总之,本研究发现了以多个重要基因为靶标的新型玉米 miRNA,它们有助于管理环境,提高玉米的耐受性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信