One-pot synthesis and pharmacological evaluation of new quinoline/pyrimido-diazepines as pulmonary antifibrotic agents.

IF 3.2 4区 医学 Q3 CHEMISTRY, MEDICINAL
Michael Atef Fawzy,Karim Hagag Ibrahim,Ashraf A Aly,Asmaa H Mohamed,Sara Mohamed Naguib Abdel Hafez,Walaa Yehia Abdelzaher,Eslam B Elkaeed,Aisha A Alsfouk,El-Shimaa Mn Abdelhafez
{"title":"One-pot synthesis and pharmacological evaluation of new quinoline/pyrimido-diazepines as pulmonary antifibrotic agents.","authors":"Michael Atef Fawzy,Karim Hagag Ibrahim,Ashraf A Aly,Asmaa H Mohamed,Sara Mohamed Naguib Abdel Hafez,Walaa Yehia Abdelzaher,Eslam B Elkaeed,Aisha A Alsfouk,El-Shimaa Mn Abdelhafez","doi":"10.1080/17568919.2024.2394018","DOIUrl":null,"url":null,"abstract":"Aim: Pulmonary fibrosis is a life threating disease which requires an immediate treatment and due to the limited medications, this study focused on synthesizing a series of quinoline-based pyrimidodiazepines 4a-f as a novel antifibrotic hit.Materials & methods: The target compounds were synthesized via a one-pot reaction then investigated in a rat model of lung fibrosis induced by bleomycin (BLM).Results: Results revealed significant attenuation of the tested pro-inflammatory cytokines, fibrotic genes and apoptotic markers; however, Bcl-2 was upregulated, indicating a protective effect against fibrosis. Moreover, the molecular docking studies highlighted promising interactions between compounds 4b and 4c and specific amino acids within the protein pockets of caspase-3 (ARG341 and THR177), malondialdehyde (LYS195, LYS118 and ARG188) and TNF-α (SER99 and NME102).Conclusion: Compounds 4b and 4c emerge as promising candidates for further preclinical investigation as pulmonary antifibrotic agents.","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":"48 1","pages":"1-20"},"PeriodicalIF":3.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17568919.2024.2394018","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Aim: Pulmonary fibrosis is a life threating disease which requires an immediate treatment and due to the limited medications, this study focused on synthesizing a series of quinoline-based pyrimidodiazepines 4a-f as a novel antifibrotic hit.Materials & methods: The target compounds were synthesized via a one-pot reaction then investigated in a rat model of lung fibrosis induced by bleomycin (BLM).Results: Results revealed significant attenuation of the tested pro-inflammatory cytokines, fibrotic genes and apoptotic markers; however, Bcl-2 was upregulated, indicating a protective effect against fibrosis. Moreover, the molecular docking studies highlighted promising interactions between compounds 4b and 4c and specific amino acids within the protein pockets of caspase-3 (ARG341 and THR177), malondialdehyde (LYS195, LYS118 and ARG188) and TNF-α (SER99 and NME102).Conclusion: Compounds 4b and 4c emerge as promising candidates for further preclinical investigation as pulmonary antifibrotic agents.
作为肺部抗纤维化药物的新型喹啉/嘧啶二氮杂卓的单锅合成和药理学评价。
目的:肺纤维化是一种威胁生命的疾病,需要立即治疗,由于药物有限,本研究重点合成了一系列喹啉基嘧啶二氮杂卓 4a-f 作为新型抗纤维化药物:通过一锅反应合成目标化合物,然后在博莱霉素(BLM)诱导的大鼠肺纤维化模型中进行研究:结果表明,受试的促炎细胞因子、纤维化基因和细胞凋亡标志物均明显减少;然而,Bcl-2上调,表明其具有抗纤维化的保护作用。此外,分子对接研究强调了化合物 4b 和 4c 与 Caspase-3(ARG341 和 THR177)、丙二醛(LYS195、LYS118 和 ARG188)和 TNF-α(SER99 和 NME102)蛋白质口袋中的特定氨基酸之间有希望的相互作用:结论:化合物 4b 和 4c 很有希望作为肺部抗纤维化制剂接受进一步的临床前研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Future medicinal chemistry
Future medicinal chemistry CHEMISTRY, MEDICINAL-
CiteScore
5.80
自引率
2.40%
发文量
118
审稿时长
4-8 weeks
期刊介绍: Future Medicinal Chemistry offers a forum for the rapid publication of original research and critical reviews of the latest milestones in the field. Strong emphasis is placed on ensuring that the journal stimulates awareness of issues that are anticipated to play an increasingly central role in influencing the future direction of pharmaceutical chemistry. Where relevant, contributions are also actively encouraged on areas as diverse as biotechnology, enzymology, green chemistry, genomics, immunology, materials science, neglected diseases and orphan drugs, pharmacogenomics, proteomics and toxicology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信