Broadband polarization conversion metasurface for beam deflection with switchable characteristics

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yuhao Liang, Yuxin Liu, Weikai Huang and Yu-Sheng Lin
{"title":"Broadband polarization conversion metasurface for beam deflection with switchable characteristics","authors":"Yuhao Liang, Yuxin Liu, Weikai Huang and Yu-Sheng Lin","doi":"10.1039/D4TC03245D","DOIUrl":null,"url":null,"abstract":"<p >We present a dynamically switchable polarization conversion metasurface (PCM) integrated with an electromechanical actuator (EMA) that enabled the switching of states for the reflected wavefront of circularly polarized waves in the terahertz (THz) spectrum. The unit cell of the proposed PCM was composed of double L-shaped Au structures covering a dielectric layer suspended atop a bottom reflective mirror layer. The PCM showed a broad polarization conversion band ranging from 0.74 THz to 1.64 THz with a polarization conversion ratio &gt;90% for incident linear polarized (LP) and circular polarized (CP) waves. Within this broadband, the full 2π phase shifts of the reflected orthogonal CP wave could be obtained by rotating the orientation angle of the PCM unit cell spanning a wide frequency range. The anomalous reflection effect of PCM was simulated and discussed to validate the performance of the proposed switchable coding metasurface based on Pancharatnam–Berry phase theory and the generalized Snell's law. In particular, the reflection efficiency could be tuned dynamically by transforming the movable configuration. The proposed PCM had significant potential for applications in imaging and communication systems, which opens new avenues for the development of multifunctional devices that can modulate THz wavefronts.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc03245d","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We present a dynamically switchable polarization conversion metasurface (PCM) integrated with an electromechanical actuator (EMA) that enabled the switching of states for the reflected wavefront of circularly polarized waves in the terahertz (THz) spectrum. The unit cell of the proposed PCM was composed of double L-shaped Au structures covering a dielectric layer suspended atop a bottom reflective mirror layer. The PCM showed a broad polarization conversion band ranging from 0.74 THz to 1.64 THz with a polarization conversion ratio >90% for incident linear polarized (LP) and circular polarized (CP) waves. Within this broadband, the full 2π phase shifts of the reflected orthogonal CP wave could be obtained by rotating the orientation angle of the PCM unit cell spanning a wide frequency range. The anomalous reflection effect of PCM was simulated and discussed to validate the performance of the proposed switchable coding metasurface based on Pancharatnam–Berry phase theory and the generalized Snell's law. In particular, the reflection efficiency could be tuned dynamically by transforming the movable configuration. The proposed PCM had significant potential for applications in imaging and communication systems, which opens new avenues for the development of multifunctional devices that can modulate THz wavefronts.

Abstract Image

Abstract Image

用于光束偏转的具有可切换特性的宽带偏振转换元表面
我们介绍了一种与机电致动器 (EMA) 集成的动态可切换偏振转换元表面 (PCM),它能够在太赫兹 (THz) 光谱中切换圆偏振波反射波阵面的状态。所提出的 PCM 单元由双 L 形金结构组成,覆盖着悬浮在底部反射镜层上的介电层。该 PCM 显示出 0.74 太赫兹至 1.64 太赫兹的宽极化转换带,入射线极化(LP)和圆极化(CP)波的极化转换率为 90%。在这一宽带内,通过旋转 PCM 单元的取向角,可获得反射的正交 CP 波的完整 2π 相移,频率范围很广。通过模拟和讨论 PCM 的反常反射效应,验证了基于 Pancharatnam-Berry 相位理论和广义斯涅耳定律的可切换编码元表面的性能。特别是,反射效率可通过改变可移动配置进行动态调整。所提出的 PCM 在成像和通信系统中具有巨大的应用潜力,这为开发可调制太赫兹波面的多功能设备开辟了新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信