Veronica M Sinotte, Veronica Ramos Viana, Diego Prado Vasquez, Sevgi Mutlu Sirakova, Nabila Rodriguez Valeron, Ana Cuesta Mate, Shannara K Taylor Parkins, Esther Merino Velasco, David Zilber, Rasmus Munk, Sandra B Andersen, Robert R Dunn, Leonie J Jahn
{"title":"Making yogurt with the ant holobiont uncovers bacteria, acids, and enzymes for food fermentation","authors":"Veronica M Sinotte, Veronica Ramos Viana, Diego Prado Vasquez, Sevgi Mutlu Sirakova, Nabila Rodriguez Valeron, Ana Cuesta Mate, Shannara K Taylor Parkins, Esther Merino Velasco, David Zilber, Rasmus Munk, Sandra B Andersen, Robert R Dunn, Leonie J Jahn","doi":"10.1101/2024.09.16.613207","DOIUrl":null,"url":null,"abstract":"Milk fermentation has a rich history in which food culture, the environment, and microbes intersect. However, the biocultural origins of fermentation practices and microbes have largely been replaced by industrial processes. Here, we consider a historical fermentation originating from Turkey and Bulgaria, ant yogurt. We revisit the traditional practices and modern gastronomic applications that use red wood ants (Formica rufa group) to initiate milk fermentation. Subsequently, we characterize the ants and experimental ant-derived yogurts. We uncover that the ant holobiont, which consists of the ants and their microbes, contributes key acids and enzymes to fermentation. Metabarcoding and culturing revealed that lactic and acetic acid bacteria, including species related to those in conventional yogurt and sourdough, originate from the live ants and proliferate in the milk. The ants and bacteria consequently introduce formic, lactic, and acetic acid, advantageous for yogurt acidification and coagulation. Last, proteases with the potential to act on casein and alter yogurt texture are produced by the ants and bacteria. The ant holobiont thus facilitates fermentation akin to the microbial consortia in other ferments. Our findings highlight the value of integrating traditional, gastronomic, and biological frameworks to uncover the origins and applications of microbes for fermented foods.","PeriodicalId":501357,"journal":{"name":"bioRxiv - Microbiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.16.613207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Milk fermentation has a rich history in which food culture, the environment, and microbes intersect. However, the biocultural origins of fermentation practices and microbes have largely been replaced by industrial processes. Here, we consider a historical fermentation originating from Turkey and Bulgaria, ant yogurt. We revisit the traditional practices and modern gastronomic applications that use red wood ants (Formica rufa group) to initiate milk fermentation. Subsequently, we characterize the ants and experimental ant-derived yogurts. We uncover that the ant holobiont, which consists of the ants and their microbes, contributes key acids and enzymes to fermentation. Metabarcoding and culturing revealed that lactic and acetic acid bacteria, including species related to those in conventional yogurt and sourdough, originate from the live ants and proliferate in the milk. The ants and bacteria consequently introduce formic, lactic, and acetic acid, advantageous for yogurt acidification and coagulation. Last, proteases with the potential to act on casein and alter yogurt texture are produced by the ants and bacteria. The ant holobiont thus facilitates fermentation akin to the microbial consortia in other ferments. Our findings highlight the value of integrating traditional, gastronomic, and biological frameworks to uncover the origins and applications of microbes for fermented foods.