Gali Tzlil, Maria del Carmen Marin, Yuma Matsuzaki, Probal Nag, Shota Itakura, Yosuke Mizuno, Shunya Murakoshi, Tatsuki Tanaka, Shirley Larom, Masae Konno, Rei Abe-Yoshizumi, Ana Molina-Marquez, Daniela Barcenas-Perez, Jose Cheel, Michal Koblizek, Rosa Leon, Kota Katayama, Hideki Kandori, Igor Schapiro, Wataru Shihoya, Osamu Nureki, Keiichi Inoue, Andrey Rozenberg, Ariel Chazan, Oded Beja
{"title":"Light-harvesting by antenna-containing rhodopsins in pelagic Asgard archaea","authors":"Gali Tzlil, Maria del Carmen Marin, Yuma Matsuzaki, Probal Nag, Shota Itakura, Yosuke Mizuno, Shunya Murakoshi, Tatsuki Tanaka, Shirley Larom, Masae Konno, Rei Abe-Yoshizumi, Ana Molina-Marquez, Daniela Barcenas-Perez, Jose Cheel, Michal Koblizek, Rosa Leon, Kota Katayama, Hideki Kandori, Igor Schapiro, Wataru Shihoya, Osamu Nureki, Keiichi Inoue, Andrey Rozenberg, Ariel Chazan, Oded Beja","doi":"10.1101/2024.09.18.613612","DOIUrl":null,"url":null,"abstract":"Aquatic bacterial rhodopsin proton pumps have been recently reported to utilize hydroxylated carotenoids1,2. Here, by combining a marine chromophore extract with purified archaeal rhodopsins identified in marine metagenomes, we report on light energy transfer from diverse hydroxylated carotenoids (lutein, diatoxanthin, and fucoxanthin) to heimdallarchaeial rhodopsins (HeimdallRs)3,4 from uncultured marine planktonic members of the 'Ca. Kariarchaeaceae' ('Ca. Asgardarchaeota')5. These light-harvesting antennas absorb in the blue-light range and transfer energy to the green-light absorbing retinal chromophore within HeimdallRs. Furthermore, antenna enhancement of proton pumping by HeimdallRs is also observed under white-light illumination along with a carotenoid-binding induced structural change in the protein. Our results indicate that the use of light-harvesting antennas in microbial rhodopsins is observed not only in bacteria but also in marine archaea.","PeriodicalId":501357,"journal":{"name":"bioRxiv - Microbiology","volume":"214 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.18.613612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Aquatic bacterial rhodopsin proton pumps have been recently reported to utilize hydroxylated carotenoids1,2. Here, by combining a marine chromophore extract with purified archaeal rhodopsins identified in marine metagenomes, we report on light energy transfer from diverse hydroxylated carotenoids (lutein, diatoxanthin, and fucoxanthin) to heimdallarchaeial rhodopsins (HeimdallRs)3,4 from uncultured marine planktonic members of the 'Ca. Kariarchaeaceae' ('Ca. Asgardarchaeota')5. These light-harvesting antennas absorb in the blue-light range and transfer energy to the green-light absorbing retinal chromophore within HeimdallRs. Furthermore, antenna enhancement of proton pumping by HeimdallRs is also observed under white-light illumination along with a carotenoid-binding induced structural change in the protein. Our results indicate that the use of light-harvesting antennas in microbial rhodopsins is observed not only in bacteria but also in marine archaea.