Tomasz Spietz, Maira Kazankapova, Szymon Dobras, Zhanar Kassenova, Bolat Yermagambet, Andrey Y. Khalimon, Sławomir Stelmach
{"title":"Characterization of Humic Acid Salts and Their Use for CO2 Reduction","authors":"Tomasz Spietz, Maira Kazankapova, Szymon Dobras, Zhanar Kassenova, Bolat Yermagambet, Andrey Y. Khalimon, Sławomir Stelmach","doi":"10.3390/min14090947","DOIUrl":null,"url":null,"abstract":"The European Union aims to be climate neutral by 2050. To achieve this ambitious goal, net greenhouse gas emissions must be reduced by at least 55% by 2030. Post-combustion CO2 capture methods are essential to reduce CO2 emissions from the chemical industry, power generation, and cement plants. To reduce CO2, it must be captured and then stored underground or converted into other valuable products. Apromising alternative for CO2 reduction is the use of humic acid salts (HASs). This work describes a process for the preparation of potassium (HmK) and ammonium (HmA) humic acid salts from oxidized lignite (leonardite). A detailed characterization of the obtained HASs was conducted, including elemental, granulometric, and thermogravimetric analyses, as well as 1H-NMR and IR spectroscopy. Moreover, the CO2 absorption capacity and absorption rate of HASs were experimentally investigated. The results showed that the absorption capacity of the HASs was up to 10.9 g CO2 per kg. The CO2 absorption rate of 30% HmA solution was found to be similar to that of 30% MEA. Additionally, HmA solution demonstrated better efficiency in CO2 absorption than HmK. One of the issues observed during the CO2 absorption was foaming of the solutions, which was more noticeable with HmK.","PeriodicalId":18601,"journal":{"name":"Minerals","volume":"19 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerals","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/min14090947","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The European Union aims to be climate neutral by 2050. To achieve this ambitious goal, net greenhouse gas emissions must be reduced by at least 55% by 2030. Post-combustion CO2 capture methods are essential to reduce CO2 emissions from the chemical industry, power generation, and cement plants. To reduce CO2, it must be captured and then stored underground or converted into other valuable products. Apromising alternative for CO2 reduction is the use of humic acid salts (HASs). This work describes a process for the preparation of potassium (HmK) and ammonium (HmA) humic acid salts from oxidized lignite (leonardite). A detailed characterization of the obtained HASs was conducted, including elemental, granulometric, and thermogravimetric analyses, as well as 1H-NMR and IR spectroscopy. Moreover, the CO2 absorption capacity and absorption rate of HASs were experimentally investigated. The results showed that the absorption capacity of the HASs was up to 10.9 g CO2 per kg. The CO2 absorption rate of 30% HmA solution was found to be similar to that of 30% MEA. Additionally, HmA solution demonstrated better efficiency in CO2 absorption than HmK. One of the issues observed during the CO2 absorption was foaming of the solutions, which was more noticeable with HmK.
期刊介绍:
Minerals (ISSN 2075-163X) is an international open access journal that covers the broad field of mineralogy, economic mineral resources, mineral exploration, innovative mining techniques and advances in mineral processing. It publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.