Characterization of Humic Acid Salts and Their Use for CO2 Reduction

IF 2.2 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Minerals Pub Date : 2024-09-18 DOI:10.3390/min14090947
Tomasz Spietz, Maira Kazankapova, Szymon Dobras, Zhanar Kassenova, Bolat Yermagambet, Andrey Y. Khalimon, Sławomir Stelmach
{"title":"Characterization of Humic Acid Salts and Their Use for CO2 Reduction","authors":"Tomasz Spietz, Maira Kazankapova, Szymon Dobras, Zhanar Kassenova, Bolat Yermagambet, Andrey Y. Khalimon, Sławomir Stelmach","doi":"10.3390/min14090947","DOIUrl":null,"url":null,"abstract":"The European Union aims to be climate neutral by 2050. To achieve this ambitious goal, net greenhouse gas emissions must be reduced by at least 55% by 2030. Post-combustion CO2 capture methods are essential to reduce CO2 emissions from the chemical industry, power generation, and cement plants. To reduce CO2, it must be captured and then stored underground or converted into other valuable products. Apromising alternative for CO2 reduction is the use of humic acid salts (HASs). This work describes a process for the preparation of potassium (HmK) and ammonium (HmA) humic acid salts from oxidized lignite (leonardite). A detailed characterization of the obtained HASs was conducted, including elemental, granulometric, and thermogravimetric analyses, as well as 1H-NMR and IR spectroscopy. Moreover, the CO2 absorption capacity and absorption rate of HASs were experimentally investigated. The results showed that the absorption capacity of the HASs was up to 10.9 g CO2 per kg. The CO2 absorption rate of 30% HmA solution was found to be similar to that of 30% MEA. Additionally, HmA solution demonstrated better efficiency in CO2 absorption than HmK. One of the issues observed during the CO2 absorption was foaming of the solutions, which was more noticeable with HmK.","PeriodicalId":18601,"journal":{"name":"Minerals","volume":"19 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerals","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/min14090947","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The European Union aims to be climate neutral by 2050. To achieve this ambitious goal, net greenhouse gas emissions must be reduced by at least 55% by 2030. Post-combustion CO2 capture methods are essential to reduce CO2 emissions from the chemical industry, power generation, and cement plants. To reduce CO2, it must be captured and then stored underground or converted into other valuable products. Apromising alternative for CO2 reduction is the use of humic acid salts (HASs). This work describes a process for the preparation of potassium (HmK) and ammonium (HmA) humic acid salts from oxidized lignite (leonardite). A detailed characterization of the obtained HASs was conducted, including elemental, granulometric, and thermogravimetric analyses, as well as 1H-NMR and IR spectroscopy. Moreover, the CO2 absorption capacity and absorption rate of HASs were experimentally investigated. The results showed that the absorption capacity of the HASs was up to 10.9 g CO2 per kg. The CO2 absorption rate of 30% HmA solution was found to be similar to that of 30% MEA. Additionally, HmA solution demonstrated better efficiency in CO2 absorption than HmK. One of the issues observed during the CO2 absorption was foaming of the solutions, which was more noticeable with HmK.
腐植酸盐的特性及其在二氧化碳减排中的应用
欧盟的目标是到 2050 年实现气候中立。为实现这一宏伟目标,到 2030 年,温室气体净排放量必须至少减少 55%。燃烧后二氧化碳捕集方法对于减少化工、发电和水泥厂的二氧化碳排放至关重要。要减少二氧化碳排放量,必须先捕获二氧化碳,然后将其储存在地下或转化为其他有价值的产品。使用腐植酸盐(HASs)是减少二氧化碳排放量的最佳选择。这项研究介绍了从氧化褐煤(leonardite)中制备腐植酸钾盐(HmK)和腐植酸铵盐(HmA)的工艺。对所获得的腐植酸盐进行了详细的表征,包括元素分析、粒度分析、热重分析以及 1H-NMR 和 IR 光谱分析。此外,还对 HASs 的二氧化碳吸收能力和吸收率进行了实验研究。结果表明,HASs 的吸收能力高达每千克 10.9 克 CO2。30% HmA 溶液的二氧化碳吸收率与 30% MEA 相似。此外,HmA 溶液比 HmK 的二氧化碳吸收效率更高。在二氧化碳吸收过程中观察到的一个问题是溶液起泡,这在 HmK 溶液中更为明显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Minerals
Minerals MINERALOGY-MINING & MINERAL PROCESSING
CiteScore
4.10
自引率
20.00%
发文量
1351
审稿时长
19.04 days
期刊介绍: Minerals (ISSN 2075-163X) is an international open access journal that covers the broad field of mineralogy, economic mineral resources, mineral exploration, innovative mining techniques and advances in mineral processing. It publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信