Ring operads and symmetric bimonoidal categories

Kailin Pan
{"title":"Ring operads and symmetric bimonoidal categories","authors":"Kailin Pan","doi":"arxiv-2409.09664","DOIUrl":null,"url":null,"abstract":"We generalize the classical operad pair theory to a new model for $E_\\infty$\nring spaces, which we call ring operad theory, and establish a connection with\nthe classical operad pair theory, allowing the classical multiplicative\ninfinite loop machine to be applied to algebras over any $E_\\infty$ ring\noperad. As an application, we show that classifying spaces of symmetric\nbimonoidal categories are directly homeomorphic to certain $E_\\infty$ ring\nspaces in the ring operad sense. Consequently, this provides an alternative\nconstruction from symmetric bimonoidal categories to classical $E_\\infty$ ring\nspaces. We also present a comparison between this construction and the\nclassical approach.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We generalize the classical operad pair theory to a new model for $E_\infty$ ring spaces, which we call ring operad theory, and establish a connection with the classical operad pair theory, allowing the classical multiplicative infinite loop machine to be applied to algebras over any $E_\infty$ ring operad. As an application, we show that classifying spaces of symmetric bimonoidal categories are directly homeomorphic to certain $E_\infty$ ring spaces in the ring operad sense. Consequently, this provides an alternative construction from symmetric bimonoidal categories to classical $E_\infty$ ring spaces. We also present a comparison between this construction and the classical approach.
环操作数和对称双元范畴
我们将经典操作数对理论推广到一个新的$E_\infty$环空间模型,我们称之为环操作数理论,并建立了与经典操作数对理论的联系,使得经典乘法无限循环机可以应用于任意$E_\infty$环操作数上的代数。作为一个应用,我们证明了对称类的分类空间在环操作数意义上直接同构于某些$E_\infty$环空间。因此,这提供了从对称双元范畴到经典$E_\infty$环空间的另一种构造。我们还比较了这种构造和经典方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信