{"title":"Star angle modified with relativistic effects/StarNAV integrated navigation method for Mars exploration","authors":"Mingzhen Gui, Yifeng Wei, Hua Yang, Yuqing Yang","doi":"10.1016/j.asr.2024.08.077","DOIUrl":null,"url":null,"abstract":"The celestial navigation system based on star angle (SA) is a classical autonomous navigation method for the spacecraft, which directly provides the position information of the spacecraft relative to the near celestial body. But due to the relativistic effects, the star direction observed by spacecraft is inconsistent with that acquired from star ephemeris, which reduces navigation accuracy of SA. In addition, SA cannot directly provide the velocity information of the spacecraft. StarNAV is a novel celestial navigation method that utilizes the relativistic effects, which mostly provides the velocity information of the spacecraft. In this paper, the star angle modified with relativistic effects (SAMRE)/StarNAV integrated navigation method is proposed. The measurement model of SAMRE is established by considering relativistic effects in the measurement model of SA. Simulation results indicate that during the Mars approach phase, SAMRE has better navigation accuracy compared with SA, and the navigation accuracy of the SAMRE/StarNAV integrated navigation method is higher than that of SAMRE, StarNAV and SA/StarNAV, respectively. Furthermore, the paper analyses the impact of measurement errors on the navigation accuracy of SAMRE/StarNAV.","PeriodicalId":50850,"journal":{"name":"Advances in Space Research","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Space Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.asr.2024.08.077","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The celestial navigation system based on star angle (SA) is a classical autonomous navigation method for the spacecraft, which directly provides the position information of the spacecraft relative to the near celestial body. But due to the relativistic effects, the star direction observed by spacecraft is inconsistent with that acquired from star ephemeris, which reduces navigation accuracy of SA. In addition, SA cannot directly provide the velocity information of the spacecraft. StarNAV is a novel celestial navigation method that utilizes the relativistic effects, which mostly provides the velocity information of the spacecraft. In this paper, the star angle modified with relativistic effects (SAMRE)/StarNAV integrated navigation method is proposed. The measurement model of SAMRE is established by considering relativistic effects in the measurement model of SA. Simulation results indicate that during the Mars approach phase, SAMRE has better navigation accuracy compared with SA, and the navigation accuracy of the SAMRE/StarNAV integrated navigation method is higher than that of SAMRE, StarNAV and SA/StarNAV, respectively. Furthermore, the paper analyses the impact of measurement errors on the navigation accuracy of SAMRE/StarNAV.
期刊介绍:
The COSPAR publication Advances in Space Research (ASR) is an open journal covering all areas of space research including: space studies of the Earth''s surface, meteorology, climate, the Earth-Moon system, planets and small bodies of the solar system, upper atmospheres, ionospheres and magnetospheres of the Earth and planets including reference atmospheres, space plasmas in the solar system, astrophysics from space, materials sciences in space, fundamental physics in space, space debris, space weather, Earth observations of space phenomena, etc.
NB: Please note that manuscripts related to life sciences as related to space are no more accepted for submission to Advances in Space Research. Such manuscripts should now be submitted to the new COSPAR Journal Life Sciences in Space Research (LSSR).
All submissions are reviewed by two scientists in the field. COSPAR is an interdisciplinary scientific organization concerned with the progress of space research on an international scale. Operating under the rules of ICSU, COSPAR ignores political considerations and considers all questions solely from the scientific viewpoint.