LatticeGraphNet: a two-scale graph neural operator for simulating lattice structures

IF 8.7 2区 工程技术 Q1 Mathematics
Ayush Jain, Ehsan Haghighat, Sai Nelaturi
{"title":"LatticeGraphNet: a two-scale graph neural operator for simulating lattice structures","authors":"Ayush Jain, Ehsan Haghighat, Sai Nelaturi","doi":"10.1007/s00366-024-02034-7","DOIUrl":null,"url":null,"abstract":"<p>This study introduces a two-scale graph neural operator (GNO), namely, LatticeGraphNet (LGN), designed as a surrogate model for costly nonlinear finite-element simulations of three-dimensional latticed parts and structures. LGN has two networks: LGN-i, learning the reduced compressive response of lattices, and LGN-ii, learning the mapping from the reduced representation onto the tetrahedral mesh. LGN can predict deformation for arbitrary lattices, therefore the name operator. Our approach significantly reduces inference time while maintaining a reasonable accuracy for unseen simulations, establishing the use of GNOs as efficient surrogate models for evaluating mechanical responses of lattices and structures.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":"195 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering with Computers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00366-024-02034-7","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a two-scale graph neural operator (GNO), namely, LatticeGraphNet (LGN), designed as a surrogate model for costly nonlinear finite-element simulations of three-dimensional latticed parts and structures. LGN has two networks: LGN-i, learning the reduced compressive response of lattices, and LGN-ii, learning the mapping from the reduced representation onto the tetrahedral mesh. LGN can predict deformation for arbitrary lattices, therefore the name operator. Our approach significantly reduces inference time while maintaining a reasonable accuracy for unseen simulations, establishing the use of GNOs as efficient surrogate models for evaluating mechanical responses of lattices and structures.

Abstract Image

LatticeGraphNet:用于模拟晶格结构的双尺度图神经算子
本研究介绍了一种双尺度图神经算子(GNO),即 LatticeGraphNet (LGN),它被设计为成本高昂的三维晶格部件和结构非线性有限元模拟的替代模型。LGN 有两个网络:LGN-i 学习网格的压缩响应,LGN-ii 学习从压缩表示到四面体网格的映射。LGN 可以预测任意网格的变形,因此被称为算子。我们的方法大大缩短了推理时间,同时对未见过的模拟保持了合理的准确性,从而将 GNOs 确立为评估晶格和结构机械响应的高效替代模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering with Computers
Engineering with Computers 工程技术-工程:机械
CiteScore
16.50
自引率
2.30%
发文量
203
审稿时长
9 months
期刊介绍: Engineering with Computers is an international journal dedicated to simulation-based engineering. It features original papers and comprehensive reviews on technologies supporting simulation-based engineering, along with demonstrations of operational simulation-based engineering systems. The journal covers various technical areas such as adaptive simulation techniques, engineering databases, CAD geometry integration, mesh generation, parallel simulation methods, simulation frameworks, user interface technologies, and visualization techniques. It also encompasses a wide range of application areas where engineering technologies are applied, spanning from automotive industry applications to medical device design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信