Integration of scanning probe microscope with high-performance computing: Fixed-policy and reward-driven workflows implementation

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yu Liu, Utkarsh Pratiush, Jason Bemis, Roger Proksch, Reece Emery, Philip D. Rack, Yu-Chen Liu, Jan-Chi Yang, Stanislav Udovenko, Susan Trolier-McKinstry, Sergei V. Kalinin
{"title":"Integration of scanning probe microscope with high-performance computing: Fixed-policy and reward-driven workflows implementation","authors":"Yu Liu, Utkarsh Pratiush, Jason Bemis, Roger Proksch, Reece Emery, Philip D. Rack, Yu-Chen Liu, Jan-Chi Yang, Stanislav Udovenko, Susan Trolier-McKinstry, Sergei V. Kalinin","doi":"10.1063/5.0219990","DOIUrl":null,"url":null,"abstract":"The rapid development of computation power and machine learning algorithms has paved the way for automating scientific discovery with a scanning probe microscope (SPM). The key elements toward operationalization of the automated SPM are the interface to enable SPM control from Python codes, availability of high computing power, and development of workflows for scientific discovery. Here, we build a Python interface library that enables controlling an SPM from either a local computer or a remote high-performance computer, which satisfies the high computation power need of machine learning algorithms in autonomous workflows. We further introduce a general platform to abstract the operations of SPM in scientific discovery into fixed-policy or reward-driven workflows. Our work provides a full infrastructure to build automated SPM workflows for both routine operations and autonomous scientific discovery with machine learning.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0219990","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid development of computation power and machine learning algorithms has paved the way for automating scientific discovery with a scanning probe microscope (SPM). The key elements toward operationalization of the automated SPM are the interface to enable SPM control from Python codes, availability of high computing power, and development of workflows for scientific discovery. Here, we build a Python interface library that enables controlling an SPM from either a local computer or a remote high-performance computer, which satisfies the high computation power need of machine learning algorithms in autonomous workflows. We further introduce a general platform to abstract the operations of SPM in scientific discovery into fixed-policy or reward-driven workflows. Our work provides a full infrastructure to build automated SPM workflows for both routine operations and autonomous scientific discovery with machine learning.
扫描探针显微镜与高性能计算的集成:固定政策和奖励驱动工作流的实施
计算能力和机器学习算法的快速发展为利用扫描探针显微镜(SPM)实现科学发现自动化铺平了道路。实现自动 SPM 操作化的关键因素是通过 Python 代码控制 SPM 的接口、高计算能力的可用性以及科学发现工作流程的开发。在此,我们建立了一个 Python 接口库,可通过本地计算机或远程高性能计算机控制 SPM,满足自主工作流中机器学习算法对高计算能力的需求。我们还引入了一个通用平台,将科学发现中的 SPM 操作抽象为固定策略或奖励驱动的工作流。我们的工作提供了一个完整的基础架构,可为常规操作和机器学习自主科学发现构建自动化 SPM 工作流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信