H. L. Le, N. L. Chen, M. Jiang, C. Le Bris, C. Charrière, S. Boyé-Péronne, J.-C. Loison, U. Jacovella, B. Gans
{"title":"Exploring photoionization of gas-phase free radicals with a widely tunable VUV laser at moderate spectral resolution","authors":"H. L. Le, N. L. Chen, M. Jiang, C. Le Bris, C. Charrière, S. Boyé-Péronne, J.-C. Loison, U. Jacovella, B. Gans","doi":"10.1063/5.0217178","DOIUrl":null,"url":null,"abstract":"The VUv Laser for Considering Astrophysical and Isolated Molecules (VULCAIMs) setup [Harper et al., Phys. Chem. Chem. Phys. 24, 2777 (2022)] integrates a narrow-bandwidth tunable vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) nanosecond-pulsed laser system (6–16 eV) and a photoelectron spectrometer, designed for recording high-spectral-resolution (rotationally resolved) photoelectron spectra of gas-phase free radicals. This approach usually needs beforehand medium-resolution synchrotron data to guide the selection of specific spectral regions to be investigated at higher resolution with the VULCAIM setup. We present an upgraded version of the VUV laser system integrating an optical parametric oscillator for continuously scanned medium-resolution measurements (<3 cm−1) across the whole VUV and XUV spectral ranges. This innovation enables broader coverage without the need to access synchrotron facilities. Furthermore, rapid mode switching allows for maintaining optimized radical production conditions from mid-resolution to high-resolution operation mode, enhancing spectroscopy capabilities significantly. The new capabilities of the VULCAIM setup are illustrated on two showcases of photoionization studies: the nitric oxide (NO) stable molecular species and the benzyl (C6H5CH2) free radical produced by pyrolysis.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0217178","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The VUv Laser for Considering Astrophysical and Isolated Molecules (VULCAIMs) setup [Harper et al., Phys. Chem. Chem. Phys. 24, 2777 (2022)] integrates a narrow-bandwidth tunable vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) nanosecond-pulsed laser system (6–16 eV) and a photoelectron spectrometer, designed for recording high-spectral-resolution (rotationally resolved) photoelectron spectra of gas-phase free radicals. This approach usually needs beforehand medium-resolution synchrotron data to guide the selection of specific spectral regions to be investigated at higher resolution with the VULCAIM setup. We present an upgraded version of the VUV laser system integrating an optical parametric oscillator for continuously scanned medium-resolution measurements (<3 cm−1) across the whole VUV and XUV spectral ranges. This innovation enables broader coverage without the need to access synchrotron facilities. Furthermore, rapid mode switching allows for maintaining optimized radical production conditions from mid-resolution to high-resolution operation mode, enhancing spectroscopy capabilities significantly. The new capabilities of the VULCAIM setup are illustrated on two showcases of photoionization studies: the nitric oxide (NO) stable molecular species and the benzyl (C6H5CH2) free radical produced by pyrolysis.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.