Matthew Phillips, Muh-Jang Chen, Jong Ryu, Mohammed Zikry
{"title":"Dynamic Behavior of Ribbed Viscoelastic CNT-PDMS Thin-Films for Multifunctional Applications","authors":"Matthew Phillips, Muh-Jang Chen, Jong Ryu, Mohammed Zikry","doi":"10.1002/mame.202400098","DOIUrl":null,"url":null,"abstract":"<p>Tailored ribbing structures are obtained by large-scale rolling in polymer PDMS thin-films by adding carbon nanotubes (CNT) inclusions, which significantly improved the mechanical behavior of systems subjected to dynamic compressive strain rates. A nonlinear explicit dynamic three-dimensional finite-element (FE) scheme is used to understand and predict the thermomechanical response of the manufactured ribbed thin-film structures subjected to dynamic in-plane compressive loading. Representative volume element (RVE) FE models of the ribbed thin-films are subjected to strain rates as high as 10<sup>4</sup> s<sup>−1</sup> in both the transverse and parallel ribbing directions. Latin Hypercube Sampling of the microstructural parameters, as informed from experimental observations, provide the microstructurally based RVEs. An interior-point optimization routine is also employed on a regression model trained from the FE predictions that can be used to design ribbed materials for multifunctional applications. The model verifies that damage can be mitigated in CNT-PDMS systems subjected to dynamic compressive loading conditions by controlling the ribbing microstructural characteristics, such as the film thickness and the ribbing amplitude and wavelength. This approach provides a framework for designing materials that can be utilized for applications that require high strain rate damage tolerance, drag reduction, antifouling, and superhydrophobicity.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 11","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400098","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Materials and Engineering","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mame.202400098","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Tailored ribbing structures are obtained by large-scale rolling in polymer PDMS thin-films by adding carbon nanotubes (CNT) inclusions, which significantly improved the mechanical behavior of systems subjected to dynamic compressive strain rates. A nonlinear explicit dynamic three-dimensional finite-element (FE) scheme is used to understand and predict the thermomechanical response of the manufactured ribbed thin-film structures subjected to dynamic in-plane compressive loading. Representative volume element (RVE) FE models of the ribbed thin-films are subjected to strain rates as high as 104 s−1 in both the transverse and parallel ribbing directions. Latin Hypercube Sampling of the microstructural parameters, as informed from experimental observations, provide the microstructurally based RVEs. An interior-point optimization routine is also employed on a regression model trained from the FE predictions that can be used to design ribbed materials for multifunctional applications. The model verifies that damage can be mitigated in CNT-PDMS systems subjected to dynamic compressive loading conditions by controlling the ribbing microstructural characteristics, such as the film thickness and the ribbing amplitude and wavelength. This approach provides a framework for designing materials that can be utilized for applications that require high strain rate damage tolerance, drag reduction, antifouling, and superhydrophobicity.
期刊介绍:
Macromolecular Materials and Engineering is the high-quality polymer science journal dedicated to the design, modification, characterization, processing and application of advanced polymeric materials, including membranes, sensors, sustainability, composites, fibers, foams, 3D printing, actuators as well as energy and electronic applications.
Macromolecular Materials and Engineering is among the top journals publishing original research in polymer science.
The journal presents strictly peer-reviewed Research Articles, Reviews, Perspectives and Comments.
ISSN: 1438-7492 (print). 1439-2054 (online).
Readership:Polymer scientists, chemists, physicists, materials scientists, engineers
Abstracting and Indexing Information:
CAS: Chemical Abstracts Service (ACS)
CCR Database (Clarivate Analytics)
Chemical Abstracts Service/SciFinder (ACS)
Chemistry Server Reaction Center (Clarivate Analytics)
ChemWeb (ChemIndustry.com)
Chimica Database (Elsevier)
COMPENDEX (Elsevier)
Current Contents: Physical, Chemical & Earth Sciences (Clarivate Analytics)
Directory of Open Access Journals (DOAJ)
INSPEC (IET)
Journal Citation Reports/Science Edition (Clarivate Analytics)
Materials Science & Engineering Database (ProQuest)
PASCAL Database (INIST/CNRS)
Polymer Library (iSmithers RAPRA)
Reaction Citation Index (Clarivate Analytics)
Science Citation Index (Clarivate Analytics)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
SCOPUS (Elsevier)
Technology Collection (ProQuest)
Web of Science (Clarivate Analytics)