Fabrication and characterization of silicon carbide ceramic filtration media via recycling of waste red mud

IF 1.8 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS
Nilanjan Santra, Tamal Ghosh, Nijhuma Kayal
{"title":"Fabrication and characterization of silicon carbide ceramic filtration media via recycling of waste red mud","authors":"Nilanjan Santra, Tamal Ghosh, Nijhuma Kayal","doi":"10.1111/ijac.14908","DOIUrl":null,"url":null,"abstract":"A porous silicon carbide (SiC) ceramic filter was prepared at 1000°C using waste red mud (RM), SiC, pore‐forming agent, and catalyst. The influence of sintering temperature, RM content, and pore former on the mechanical performance and the porosity of porous ceramics were investigated, and based on the result optimal processing parameters were selected. The air and water permeability tests were carried out at room temperature. The stability of the ceramic filter under thermal shock and chemical treatment was investigated and corroded samples were characterized. The ceramic was prepared using optimized processing parameters obtained with a flexural strength of 65.36 MPa at a porosity of 30.15 vol.% and demonstrated good performance in terms of pure water flux, oil, and turbidity removal efficiency from industrial wastewater. The filtration and permeation results indicated that the SiC filter prepared in this study is suitable for various applications, particularly in the remediation of oil‐polluted water.","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"214 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Ceramic Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1111/ijac.14908","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

A porous silicon carbide (SiC) ceramic filter was prepared at 1000°C using waste red mud (RM), SiC, pore‐forming agent, and catalyst. The influence of sintering temperature, RM content, and pore former on the mechanical performance and the porosity of porous ceramics were investigated, and based on the result optimal processing parameters were selected. The air and water permeability tests were carried out at room temperature. The stability of the ceramic filter under thermal shock and chemical treatment was investigated and corroded samples were characterized. The ceramic was prepared using optimized processing parameters obtained with a flexural strength of 65.36 MPa at a porosity of 30.15 vol.% and demonstrated good performance in terms of pure water flux, oil, and turbidity removal efficiency from industrial wastewater. The filtration and permeation results indicated that the SiC filter prepared in this study is suitable for various applications, particularly in the remediation of oil‐polluted water.
通过回收利用废弃赤泥制作碳化硅陶瓷过滤介质并确定其特性
利用废弃赤泥(RM)、碳化硅、成孔剂和催化剂在 1000°C 下制备了多孔碳化硅(SiC)陶瓷过滤器。研究了烧结温度、RM 含量和成孔剂对多孔陶瓷机械性能和孔隙率的影响,并根据结果选择了最佳加工参数。透气性和透水性测试在室温下进行。研究了陶瓷过滤器在热冲击和化学处理下的稳定性,并对腐蚀样品进行了表征。采用优化的加工参数制备的陶瓷在孔隙率为 30.15 vol.% 时的抗折强度为 65.36 MPa,在工业废水的纯水通量、油和浊度去除效率方面表现出良好的性能。过滤和渗透结果表明,本研究制备的碳化硅过滤器适用于各种应用,尤其是油污染水的修复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Applied Ceramic Technology
International Journal of Applied Ceramic Technology 工程技术-材料科学:硅酸盐
CiteScore
3.90
自引率
9.50%
发文量
280
审稿时长
4.5 months
期刊介绍: The International Journal of Applied Ceramic Technology publishes cutting edge applied research and development work focused on commercialization of engineered ceramics, products and processes. The publication also explores the barriers to commercialization, design and testing, environmental health issues, international standardization activities, databases, and cost models. Designed to get high quality information to end-users quickly, the peer process is led by an editorial board of experts from industry, government, and universities. Each issue focuses on a high-interest, high-impact topic plus includes a range of papers detailing applications of ceramics. Papers on all aspects of applied ceramics are welcome including those in the following areas: Nanotechnology applications; Ceramic Armor; Ceramic and Technology for Energy Applications (e.g., Fuel Cells, Batteries, Solar, Thermoelectric, and HT Superconductors); Ceramic Matrix Composites; Functional Materials; Thermal and Environmental Barrier Coatings; Bioceramic Applications; Green Manufacturing; Ceramic Processing; Glass Technology; Fiber optics; Ceramics in Environmental Applications; Ceramics in Electronic, Photonic and Magnetic Applications;
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信