Construction of light-sensitive Cu2O/Fe2O3 heterostructures to promote photocatalytic CO2 reduction and photo-assisted charge storage†

IF 5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Xiankui Lv, Hongran Yang, Weiting Meng, Muhammad Arif, Xiaobo Feng, Weibin Zhang and Ting Zhu
{"title":"Construction of light-sensitive Cu2O/Fe2O3 heterostructures to promote photocatalytic CO2 reduction and photo-assisted charge storage†","authors":"Xiankui Lv, Hongran Yang, Weiting Meng, Muhammad Arif, Xiaobo Feng, Weibin Zhang and Ting Zhu","doi":"10.1039/D4SE01038H","DOIUrl":null,"url":null,"abstract":"<p >Designing high-performance bifunctional materials for photo-assisted electrochemical charge storage and photocatalysis is challenging due to the difficulty in balancing electroactivity and photo-to-electric efficiency. Herein, copper foam (CF) supported three-dimensional nanoarrays (3D NAs) composed of copper oxide/iron oxide (Cu<small><sub>2</sub></small>O/Fe<small><sub>2</sub></small>O<small><sub>3</sub></small>) heterostructures were constructed as bifunctional materials for the photocatalytic CO<small><sub>2</sub></small> reduction reaction (CO<small><sub>2</sub></small>RR) and photo-assisted supercapacitors. These Cu<small><sub>2</sub></small>O/Fe<small><sub>2</sub></small>O<small><sub>3</sub></small> 3D NAs have demonstrated high electroactivity and good light adsorption with high photocurrent responses. As a result, the optimized Cu<small><sub>2</sub></small>O/Fe<small><sub>2</sub></small>O<small><sub>3</sub></small> photocatalyst delivered a high methane (CH<small><sub>4</sub></small>) production rate of 38.6 μmol h<small><sup>−1</sup></small> g<small><sup>−1</sup></small> with good cycling stability for the CO<small><sub>2</sub></small>RR. When used for photo-assisted supercapacitors, the optimized Cu<small><sub>2</sub></small>O/Fe<small><sub>2</sub></small>O<small><sub>3</sub></small> photoelectrode exhibited a maximum photo-capacitance of 595 F g<small><sup>−1</sup></small>, delivering an enhancement of 17.3% over the capacitance obtained without light (507 F g<small><sup>−1</sup></small>). This work provides a unique approach to utilizing light energy directly to promote electrochemical and photocatalytic properties.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 21","pages":" 4992-5000"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/se/d4se01038h","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Designing high-performance bifunctional materials for photo-assisted electrochemical charge storage and photocatalysis is challenging due to the difficulty in balancing electroactivity and photo-to-electric efficiency. Herein, copper foam (CF) supported three-dimensional nanoarrays (3D NAs) composed of copper oxide/iron oxide (Cu2O/Fe2O3) heterostructures were constructed as bifunctional materials for the photocatalytic CO2 reduction reaction (CO2RR) and photo-assisted supercapacitors. These Cu2O/Fe2O3 3D NAs have demonstrated high electroactivity and good light adsorption with high photocurrent responses. As a result, the optimized Cu2O/Fe2O3 photocatalyst delivered a high methane (CH4) production rate of 38.6 μmol h−1 g−1 with good cycling stability for the CO2RR. When used for photo-assisted supercapacitors, the optimized Cu2O/Fe2O3 photoelectrode exhibited a maximum photo-capacitance of 595 F g−1, delivering an enhancement of 17.3% over the capacitance obtained without light (507 F g−1). This work provides a unique approach to utilizing light energy directly to promote electrochemical and photocatalytic properties.

Abstract Image

构建光敏 Cu2O/Fe2O3 异质结构,促进光催化二氧化碳还原和光助电荷存储
由于电活性和光电转换效率之间难以取得平衡,因此设计用于光辅助电化学电荷存储和光催化的高性能双功能材料具有挑战性。在此,我们构建了由氧化铜/氧化铁(Cu2O/Fe2O3)异质结构组成的泡沫铜(CF)支撑三维纳米阵列(3D NAs),作为光催化二氧化碳还原反应(CO2RR)和光辅助超级电容器的双功能材料。这些 Cu2O/Fe2O3 三维 NA 具有高电活度、良好的光吸附性和高光电流响应。因此,优化后的 Cu2O/Fe2O3 催化剂在光催化 CO2RR 中的甲烷(CH4)生产率高达 38.6 μmol h-1 g-1,并具有良好的循环稳定性。当用于光辅助超级电容器时,优化的 Cu2O/Fe2O3 光电极显示出 595 F g-1 的最大光电容量,比无光照时获得的电容量(507 F g-1)提高了 17.3%。这项工作提供了一种直接利用光能促进电化学和光催化特性的独特方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信