Eco-friendly synthesis and characterization of ZnO and Mg-Ag-doped ZnO nanoparticles using Phoenix dactylifera L. seeds: exploring biological activity and structural properties

IF 3.5 4区 工程技术 Q3 ENERGY & FUELS
Dalal Doudi, Nasma Mahboub, Noura Gheraissa, Ibtissam Laib, Nezar Cherrada, Ridha Messai, Noureddine Slimani
{"title":"Eco-friendly synthesis and characterization of ZnO and Mg-Ag-doped ZnO nanoparticles using Phoenix dactylifera L. seeds: exploring biological activity and structural properties","authors":"Dalal Doudi, Nasma Mahboub, Noura Gheraissa, Ibtissam Laib, Nezar Cherrada, Ridha Messai, Noureddine Slimani","doi":"10.1007/s13399-024-06115-x","DOIUrl":null,"url":null,"abstract":"<p>This study focuses on the green synthesis of zinc oxide (ZnO) and magnesium-silver-doped zinc oxide (Mg-Ag-doped ZnO) nanoparticles (NPs) via biomass conversion of Algerian Ghars date palm (<i>Phoenix dactylifera</i> L.) seeds. Aqueous extracts of the seeds were utilized as reducing and stabilizing agents in the biogenic synthesis process. Structural, compositional, and morphological analyses, including X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy-energy-dispersive X-ray analysis (SEM-EDAX), and ultraviolet–visible spectroscopy (UV–Vis), confirmed the successful formation of pure and Mg-Ag-doped ZnO NPs. The UV–Vis absorption spectra showed a shift from 395.6 nm (pure ZnO) to 373.2 nm (Mg-Ag doped), with corresponding energy values increasing from 3.13 to 3.32 eV, indicating changes in electronic structure due to doping. XRD analysis revealed an increase in average crystallite size from 12.8 nm (ZnO) to 22.0 nm (Mg-Ag ZnO) and a noticeable shift in peak positions, confirming successful doping. Biological evaluations demonstrated that Mg-Ag-doped ZnO NPs exhibited enhanced photocatalytic, antibacterial, antioxidant, and antidiabetic activities compared to undoped ZnO NPs. Notably, Mg-Ag ZnO NPs showed superior antioxidant activity with an IC<sub>50</sub> of 10.78 mg mL⁻<sup>1</sup> and EC<sub>50</sub> of 0.79 mg mL⁻<sup>1</sup>, compared to ZnO NPs with an IC<sub>50</sub> of 11.51 mg mL⁻<sup>1</sup> and EC<sub>50</sub> of 0.84 mg mL⁻<sup>1</sup>. They also exhibited higher photocatalytic degradation efficiency of methylene blue dye (93% vs. 87% for ZnO) under UV light. Antibacterial studies showed that Mg-Ag ZnO NPs had lower minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) than pure ZnO NPs, with a MIC of 0.625 mg mL⁻<sup>1</sup> and MBC of 0.625 mg mL⁻<sup>1</sup> for <i>E. coli</i>, compared to 2.5 and 10 mg mL⁻<sup>1</sup>, respectively, for pure ZnO. Furthermore, Mg-Ag-doped ZnO NPs exhibited significant α-amylase inhibition (48.0% at 0.25 mg mL⁻<sup>1</sup>), outperforming pure ZnO NPs (38.9% at the same concentration), and showed competitive inhibition to the reference drug acarbose in antidiabetic tests. These findings highlight the potential of rationally designed biogenic ZnO nanostructures synthesized through biomass conversion of <i>P. dactylifera</i> seeds, especially after strategic doping, for various biomedical and environmental applications. This green synthesis approach, utilizing renewable biomass, offers an eco-friendly and sustainable route for producing ZnO-based nanomaterials with tunable properties.</p>","PeriodicalId":488,"journal":{"name":"Biomass Conversion and Biorefinery","volume":"81 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass Conversion and Biorefinery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13399-024-06115-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This study focuses on the green synthesis of zinc oxide (ZnO) and magnesium-silver-doped zinc oxide (Mg-Ag-doped ZnO) nanoparticles (NPs) via biomass conversion of Algerian Ghars date palm (Phoenix dactylifera L.) seeds. Aqueous extracts of the seeds were utilized as reducing and stabilizing agents in the biogenic synthesis process. Structural, compositional, and morphological analyses, including X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy-energy-dispersive X-ray analysis (SEM-EDAX), and ultraviolet–visible spectroscopy (UV–Vis), confirmed the successful formation of pure and Mg-Ag-doped ZnO NPs. The UV–Vis absorption spectra showed a shift from 395.6 nm (pure ZnO) to 373.2 nm (Mg-Ag doped), with corresponding energy values increasing from 3.13 to 3.32 eV, indicating changes in electronic structure due to doping. XRD analysis revealed an increase in average crystallite size from 12.8 nm (ZnO) to 22.0 nm (Mg-Ag ZnO) and a noticeable shift in peak positions, confirming successful doping. Biological evaluations demonstrated that Mg-Ag-doped ZnO NPs exhibited enhanced photocatalytic, antibacterial, antioxidant, and antidiabetic activities compared to undoped ZnO NPs. Notably, Mg-Ag ZnO NPs showed superior antioxidant activity with an IC50 of 10.78 mg mL⁻1 and EC50 of 0.79 mg mL⁻1, compared to ZnO NPs with an IC50 of 11.51 mg mL⁻1 and EC50 of 0.84 mg mL⁻1. They also exhibited higher photocatalytic degradation efficiency of methylene blue dye (93% vs. 87% for ZnO) under UV light. Antibacterial studies showed that Mg-Ag ZnO NPs had lower minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) than pure ZnO NPs, with a MIC of 0.625 mg mL⁻1 and MBC of 0.625 mg mL⁻1 for E. coli, compared to 2.5 and 10 mg mL⁻1, respectively, for pure ZnO. Furthermore, Mg-Ag-doped ZnO NPs exhibited significant α-amylase inhibition (48.0% at 0.25 mg mL⁻1), outperforming pure ZnO NPs (38.9% at the same concentration), and showed competitive inhibition to the reference drug acarbose in antidiabetic tests. These findings highlight the potential of rationally designed biogenic ZnO nanostructures synthesized through biomass conversion of P. dactylifera seeds, especially after strategic doping, for various biomedical and environmental applications. This green synthesis approach, utilizing renewable biomass, offers an eco-friendly and sustainable route for producing ZnO-based nanomaterials with tunable properties.

Abstract Image

利用凤凰木种子以生态友好方式合成氧化锌和掺杂镁银的氧化锌纳米粒子并对其进行表征:探索其生物活性和结构特性
本研究的重点是通过对阿尔及利亚加尔斯枣椰树(Phoenix dactylifera L.)种子进行生物质转化,绿色合成氧化锌(ZnO)和掺银镁氧化锌(Mg-Ag-doped ZnO)纳米粒子(NPs)。在生物合成过程中,种子的水提取物被用作还原剂和稳定剂。结构、成分和形态分析,包括 X 射线衍射(XRD)、傅立叶变换红外光谱(FTIR)、扫描电子显微镜-能量色散 X 射线分析(SEM-EDAX)和紫外-可见光谱(UV-Vis),证实了纯 ZnO NPs 和掺杂 Mg-Ag ZnO NPs 的成功形成。紫外可见吸收光谱显示,纯 ZnO 的吸收光谱从 395.6 纳米变为 373.2 纳米(掺杂 Mg-Ag),相应的能量值从 3.13 上升到 3.32 eV,表明掺杂导致电子结构发生了变化。XRD 分析表明,平均晶粒大小从 12.8 纳米(氧化锌)增加到 22.0 纳米(掺杂镁银的氧化锌),峰位也发生了明显的变化,证明掺杂成功。生物学评估表明,与未掺杂的氧化锌纳米粒子相比,掺杂镁银的氧化锌纳米粒子具有更强的光催化、抗菌、抗氧化和抗糖尿病活性。值得注意的是,Mg-Ag ZnO NPs 的抗氧化活性更强,其 IC50 为 10.78 毫克毫升-1,EC50 为 0.79 毫克毫升-1,而 ZnO NPs 的 IC50 为 11.51 毫克毫升-1,EC50 为 0.84 毫克毫升-1。在紫外光下,它们还表现出更高的亚甲基蓝染料光催化降解效率(93%,而 ZnO 为 87%)。抗菌研究表明,Mg-Ag ZnO NPs 的最小抑菌浓度(MIC)和最小杀菌浓度(MBC)均低于纯 ZnO NPs,对大肠杆菌的最小抑菌浓度为 0.625 毫克毫升-1,最小杀菌浓度为 0.625 毫克毫升-1,而纯 ZnO 的最小抑菌浓度和最小杀菌浓度分别为 2.5 毫克毫升毫升-1 和 10 毫克毫升毫升-1。此外,掺杂镁-银的氧化锌纳米粒子对α-淀粉酶有显著的抑制作用(0.25 毫克毫升-1 时为 48.0%),优于纯氧化锌纳米粒子(相同浓度下为 38.9%),并在抗糖尿病测试中显示出对参考药物阿卡波糖的竞争性抑制作用。这些研究结果突显了通过转化 P. dactylifera 种子的生物质合成的合理设计的生物源 ZnO 纳米结构的潜力,尤其是在策略性掺杂之后,可用于各种生物医学和环境应用。这种利用可再生生物质的绿色合成方法为生产具有可调特性的氧化锌基纳米材料提供了一条生态友好和可持续发展的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomass Conversion and Biorefinery
Biomass Conversion and Biorefinery Energy-Renewable Energy, Sustainability and the Environment
CiteScore
7.00
自引率
15.00%
发文量
1358
期刊介绍: Biomass Conversion and Biorefinery presents articles and information on research, development and applications in thermo-chemical conversion; physico-chemical conversion and bio-chemical conversion, including all necessary steps for the provision and preparation of the biomass as well as all possible downstream processing steps for the environmentally sound and economically viable provision of energy and chemical products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信