Myungyeun Park, Daehwan Kim, YunSik Shin, Jayil Jeong
{"title":"Testbed and Analysis of Highway Cut-In Scenarios for Evaluating the AEB and FCW Functions","authors":"Myungyeun Park, Daehwan Kim, YunSik Shin, Jayil Jeong","doi":"10.1007/s12239-024-00146-z","DOIUrl":null,"url":null,"abstract":"<p>This study aims to provide a detailed evaluation and comparison of the performance of forward collision warning (FCW) and automatic emergency braking (AEB) systems in lane-changing scenarios, focusing on their detection range and detection angles. Real-world tests were conducted with a Tesla Model 3 and a KIA K8 to assess their detection capabilities. The experiments simulated common highway lane-changing scenarios, referencing Euro NCAP standards. Testing environments included a full-size target robot and a guided vehicle target to ensure accuracy. Preliminary tests established the test speed range and relative distances, while main tests focused on three key variables: time-to-collision (TTC) for FCW activation, TTC for AEB activation, and relative lateral positions of the target and test vehicles. The study also analyzed collisions despite FCW and AEB activation, identifying system limitations by examining deviations in TTC values and their correlation with collisions. These findings provide insights into the effectiveness and reliability of FCW and AEB systems under various conditions, aiding the advancement of ADAS technologies.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00146-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to provide a detailed evaluation and comparison of the performance of forward collision warning (FCW) and automatic emergency braking (AEB) systems in lane-changing scenarios, focusing on their detection range and detection angles. Real-world tests were conducted with a Tesla Model 3 and a KIA K8 to assess their detection capabilities. The experiments simulated common highway lane-changing scenarios, referencing Euro NCAP standards. Testing environments included a full-size target robot and a guided vehicle target to ensure accuracy. Preliminary tests established the test speed range and relative distances, while main tests focused on three key variables: time-to-collision (TTC) for FCW activation, TTC for AEB activation, and relative lateral positions of the target and test vehicles. The study also analyzed collisions despite FCW and AEB activation, identifying system limitations by examining deviations in TTC values and their correlation with collisions. These findings provide insights into the effectiveness and reliability of FCW and AEB systems under various conditions, aiding the advancement of ADAS technologies.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.