Coupling Effects and Resonant Characteristics of Rotating Composite Thin-Walled Beams in Hygrothermal Environments

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Ling Yuan, Liang Li, Weidong Zhu, Long Wang, Xiaoyu Lu, Yinghui Li
{"title":"Coupling Effects and Resonant Characteristics of Rotating Composite Thin-Walled Beams in Hygrothermal Environments","authors":"Ling Yuan, Liang Li, Weidong Zhu, Long Wang, Xiaoyu Lu, Yinghui Li","doi":"10.1007/s10338-024-00516-1","DOIUrl":null,"url":null,"abstract":"<p>This study focuses on coupled vibrations of rotating thin-walled composite beams subjected to hygrothermal effects. In the existing literature, many studies have been conducted on coupled bending-torsional vibration and resonance in hygrothermal environments. Few studies considered the coupled flapwise-edgewise and resonances of composite thin-walled beams. Considering this, the flapwise-edgewise coupling effects and resonant characteristics of rotating thin-walled composite beams in a hygrothermal environment are studied. The Rayleigh–Ritz method is used to solve the equations of the beam. Results indicate that flapwise-edgewise coupling factors are essential for the vibration analysis of rectangular thin-walled beams. The ply angle and setting angle strongly affect the internal and external resonances. Large ply angles can significantly reduce the chances of primary internal and external resonances occurring when the permitted rotational speed is lower.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10338-024-00516-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This study focuses on coupled vibrations of rotating thin-walled composite beams subjected to hygrothermal effects. In the existing literature, many studies have been conducted on coupled bending-torsional vibration and resonance in hygrothermal environments. Few studies considered the coupled flapwise-edgewise and resonances of composite thin-walled beams. Considering this, the flapwise-edgewise coupling effects and resonant characteristics of rotating thin-walled composite beams in a hygrothermal environment are studied. The Rayleigh–Ritz method is used to solve the equations of the beam. Results indicate that flapwise-edgewise coupling factors are essential for the vibration analysis of rectangular thin-walled beams. The ply angle and setting angle strongly affect the internal and external resonances. Large ply angles can significantly reduce the chances of primary internal and external resonances occurring when the permitted rotational speed is lower.

Abstract Image

湿热环境中旋转复合薄壁梁的耦合效应和共振特性
本研究的重点是旋转薄壁复合梁在湿热效应下的耦合振动。现有文献对湿热环境下的弯曲扭转耦合振动和共振进行了大量研究。很少有研究考虑了复合材料薄壁梁的襟翼-扭转耦合振动和共振。有鉴于此,本文对湿热环境中旋转薄壁复合梁的襟翼-对角耦合效应和共振特性进行了研究。采用雷利-里兹法求解梁的方程。结果表明,瓣向-边向耦合系数对矩形薄壁梁的振动分析至关重要。叠层角和设置角对内部和外部共振有很大影响。当允许的旋转速度较低时,大的瓣角可大大降低发生主要内部和外部共振的几率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信