An Hu, Li Ma, Xiaoyu Yang, Yige Yao, Yunke Zhu, Jingjing Qiu, Shuang Wang, Changjun Lu, Yunan Gao
{"title":"Colloidal II–VI nanoplatelets for optoelectronic devices: Progress and perspectives","authors":"An Hu, Li Ma, Xiaoyu Yang, Yige Yao, Yunke Zhu, Jingjing Qiu, Shuang Wang, Changjun Lu, Yunan Gao","doi":"10.1007/s12274-024-6965-y","DOIUrl":null,"url":null,"abstract":"<p>Colloidal II–VI nanoplatelets (NPLs) are solution-processable two-dimensional (2D) quantum dots that have vast potential in high-performance optoelectronic applications, including light-emitting diodes, sensors, and lasers. Superior properties, such as ultrapure emission, giant oscillator strength transition, and directional dipoles, have been demonstrated in these NPLs, which can improve the efficiency of light-emitting diodes and lower the threshold of lasers. In this review, we present an overview of the current progress and propose perspectives on the most well-studied II–VI NPLs that are suitable for the optoelectronic applications. We emphasize that the control of the symmetrical shell growth of NPLs is critical for the practical utilization of the advantages of NPLs in these devices.\n</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12274-024-6965-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Colloidal II–VI nanoplatelets (NPLs) are solution-processable two-dimensional (2D) quantum dots that have vast potential in high-performance optoelectronic applications, including light-emitting diodes, sensors, and lasers. Superior properties, such as ultrapure emission, giant oscillator strength transition, and directional dipoles, have been demonstrated in these NPLs, which can improve the efficiency of light-emitting diodes and lower the threshold of lasers. In this review, we present an overview of the current progress and propose perspectives on the most well-studied II–VI NPLs that are suitable for the optoelectronic applications. We emphasize that the control of the symmetrical shell growth of NPLs is critical for the practical utilization of the advantages of NPLs in these devices.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.