{"title":"Rational design and structural regulation of near-infrared silver chalcogenide quantum dots","authors":"Zhen-Ya Liu, Wei Zhao, Li-Ming Chen, Yan-Yan Chen, Zhi-Gang Wang, An-An Liu, Dai-Wen Pang","doi":"10.1007/s12274-024-6958-x","DOIUrl":null,"url":null,"abstract":"<p>Silver chalcogenides (Ag<sub>2</sub>E; E = S, Se, or Te) quantum dots (QDs) have emerged as promising candidates for near-infrared (NIR) applications. However, their narrow bandgap and small exciton Bohr radius render the optical properties of Ag<sub>2</sub>E QDs highly sensitive to surface and size variations. Moreover, the propensity for the formation of silver impurities and their low solubility product constants pose challenges in their controllable synthesis. Recent advancements have deepened our understanding of the relationship between the multi-hierarchical structure of Ag<sub>2</sub>E QDs and their optical properties. Through rational design and precise structural regulation, the performance of Ag<sub>2</sub>E QDs has been significantly enhanced across various applications. This review provides a comprehensive overview of historical and current progress in the synthesis and structural regulation of Ag<sub>2</sub>E QDs, encompassing aspects such as size control, crystal structure engineering, and surface/interface engineering. Additionally, it discusses outstanding challenges and potential opportunities in this field. The aim of this review is to promote the custom synthesis of Ag<sub>2</sub>E QDs for applications in biological imaging, and optoelectronics applications.\n</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12274-024-6958-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Silver chalcogenides (Ag2E; E = S, Se, or Te) quantum dots (QDs) have emerged as promising candidates for near-infrared (NIR) applications. However, their narrow bandgap and small exciton Bohr radius render the optical properties of Ag2E QDs highly sensitive to surface and size variations. Moreover, the propensity for the formation of silver impurities and their low solubility product constants pose challenges in their controllable synthesis. Recent advancements have deepened our understanding of the relationship between the multi-hierarchical structure of Ag2E QDs and their optical properties. Through rational design and precise structural regulation, the performance of Ag2E QDs has been significantly enhanced across various applications. This review provides a comprehensive overview of historical and current progress in the synthesis and structural regulation of Ag2E QDs, encompassing aspects such as size control, crystal structure engineering, and surface/interface engineering. Additionally, it discusses outstanding challenges and potential opportunities in this field. The aim of this review is to promote the custom synthesis of Ag2E QDs for applications in biological imaging, and optoelectronics applications.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.