Paula Navarro, Miguel Barrera, Alberto Olmo, Yadir Torres
{"title":"Electrical impedance characterization and modelling of Ti‐Β implants","authors":"Paula Navarro, Miguel Barrera, Alberto Olmo, Yadir Torres","doi":"10.1002/jbm.a.37797","DOIUrl":null,"url":null,"abstract":"Commercially pure titanium (c.p. Ti) and Ti6Al4V alloys are the most widely used metallic biomaterials in the biomedical sector. However, their high rigidity and the controversial toxicity of their alloying elements often compromise their clinical success. The use of porous β‐Titanium alloys is proposed as a solution to these issues. In this regard, it is necessary to implement economic, repetitive, and non‐destructive measurement techniques that allow for the semi‐quantitative evaluation of the chemical nature of the implant, its microstructural characteristics, and/or surface changes. This study proposes the use of simple measurement protocols based on electrical impedance measurements, correlating them with the porosity inherent to processing conditions (pressure and temperature), as well as the chemical composition of the implant. Results revealed a clear direct relationship between porosity and electrical impedance. The percentage and/or size of the porosity decrease with an increase in compaction pressure and temperature. Moreover, there is a notable influence of the frequency used in the measurements obtained. Additionally, the sensitivity of this measurement technique has enabled the evaluation of differences in chemical composition and the detection of intermetallics in the implants. For the first time in the literature, this research establishes relationships between stiffness and electrical impedance, using approximations and models for the observed trends. All the results obtained corroborate the appropriateness of the technique to achieve the real‐time characterization of Titanium implants, in an efficient and non‐invasive way.","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"30 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/jbm.a.37797","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Commercially pure titanium (c.p. Ti) and Ti6Al4V alloys are the most widely used metallic biomaterials in the biomedical sector. However, their high rigidity and the controversial toxicity of their alloying elements often compromise their clinical success. The use of porous β‐Titanium alloys is proposed as a solution to these issues. In this regard, it is necessary to implement economic, repetitive, and non‐destructive measurement techniques that allow for the semi‐quantitative evaluation of the chemical nature of the implant, its microstructural characteristics, and/or surface changes. This study proposes the use of simple measurement protocols based on electrical impedance measurements, correlating them with the porosity inherent to processing conditions (pressure and temperature), as well as the chemical composition of the implant. Results revealed a clear direct relationship between porosity and electrical impedance. The percentage and/or size of the porosity decrease with an increase in compaction pressure and temperature. Moreover, there is a notable influence of the frequency used in the measurements obtained. Additionally, the sensitivity of this measurement technique has enabled the evaluation of differences in chemical composition and the detection of intermetallics in the implants. For the first time in the literature, this research establishes relationships between stiffness and electrical impedance, using approximations and models for the observed trends. All the results obtained corroborate the appropriateness of the technique to achieve the real‐time characterization of Titanium implants, in an efficient and non‐invasive way.
期刊介绍:
The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device.
The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials.
Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.