Evolutionary Systems Biology Identifies Genetic Trade-offs In Rice Defense Against Above- and Belowground Attackers

Taryn S Dunivant, Damaris Godinez-Vidal, Craig Perkins, Madelyn G Lee, Matthew Ta, Simon C Groen
{"title":"Evolutionary Systems Biology Identifies Genetic Trade-offs In Rice Defense Against Above- and Belowground Attackers","authors":"Taryn S Dunivant, Damaris Godinez-Vidal, Craig Perkins, Madelyn G Lee, Matthew Ta, Simon C Groen","doi":"10.1093/pcp/pcae107","DOIUrl":null,"url":null,"abstract":"Like other plants, wild and domesticated rice species (Oryza nivara, O. rufipogon, and O. sativa) evolve in environments with various biotic and abiotic stresses that fluctuate in intensity through space and time. Microbial pathogens and invertebrate herbivores such as plant-parasitic nematodes and caterpillars show geographical and temporal variation in activity patterns and may respond differently to certain plant defensive mechanisms. As such, plant interactions with multiple community members may result in conflicting selection pressures on genetic polymorphisms. Here, through assays with different above- and belowground herbivores, the fall armyworm (Spodoptera frugiperda) and the southern root-knot nematode (Meloidogyne incognita), respectively, and comparison with rice responses to microbial pathogens, we identify potential genetic trade-offs at the KSL8 and MG1 loci on chromosome 11. KSL8 encodes the first committed step towards biosynthesis of either stemarane- or stemodane-type diterpenoids through the japonica (KSL8-jap) or indica (KSL8-ind) allele. Knocking out KSL8-jap and CPS4, encoding an enzyme that acts upstream in diterpenoid synthesis, in japonica rice cultivars increased resistance to S. frugiperda and decreased resistance to M. incognita. Furthermore, MG1 resides in a haplotype that provided resistance to M. incognita, while alternative haplotypes are involved in mediating resistance to the rice blast fungus Magnaporthe oryzae and other pests and pathogens. Finally, KSL8 and MG1 alleles are located within trans-species haplotypes and may be evolving under long-term balancing selection. Our data are consistent with a hypothesis that polymorphisms at KSL8 and MG1 may be maintained through complex and diffuse community interactions.","PeriodicalId":502140,"journal":{"name":"Plant & Cell Physiology","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant & Cell Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/pcp/pcae107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Like other plants, wild and domesticated rice species (Oryza nivara, O. rufipogon, and O. sativa) evolve in environments with various biotic and abiotic stresses that fluctuate in intensity through space and time. Microbial pathogens and invertebrate herbivores such as plant-parasitic nematodes and caterpillars show geographical and temporal variation in activity patterns and may respond differently to certain plant defensive mechanisms. As such, plant interactions with multiple community members may result in conflicting selection pressures on genetic polymorphisms. Here, through assays with different above- and belowground herbivores, the fall armyworm (Spodoptera frugiperda) and the southern root-knot nematode (Meloidogyne incognita), respectively, and comparison with rice responses to microbial pathogens, we identify potential genetic trade-offs at the KSL8 and MG1 loci on chromosome 11. KSL8 encodes the first committed step towards biosynthesis of either stemarane- or stemodane-type diterpenoids through the japonica (KSL8-jap) or indica (KSL8-ind) allele. Knocking out KSL8-jap and CPS4, encoding an enzyme that acts upstream in diterpenoid synthesis, in japonica rice cultivars increased resistance to S. frugiperda and decreased resistance to M. incognita. Furthermore, MG1 resides in a haplotype that provided resistance to M. incognita, while alternative haplotypes are involved in mediating resistance to the rice blast fungus Magnaporthe oryzae and other pests and pathogens. Finally, KSL8 and MG1 alleles are located within trans-species haplotypes and may be evolving under long-term balancing selection. Our data are consistent with a hypothesis that polymorphisms at KSL8 and MG1 may be maintained through complex and diffuse community interactions.
进化系统生物学发现了水稻防御地上和地下攻击者的遗传权衡因素
与其他植物一样,野生和驯化的水稻物种(Oryza nivara、O. rufipogon 和 O. sativa)也在具有各种生物和非生物胁迫的环境中进化,这些胁迫的强度随时间和空间而波动。微生物病原体和无脊椎动物食草动物(如植物寄生线虫和毛虫)的活动模式在地域和时间上存在差异,可能会对某些植物防御机制做出不同的反应。因此,植物与多个群落成员的相互作用可能会对遗传多态性造成相互冲突的选择压力。在这里,我们通过分别与不同的地上和地下食草动物--秋绵虫(Spodoptera frugiperda)和南方根结线虫(Meloidogyne incognita)--进行试验,并与水稻对微生物病原体的反应进行比较,确定了 11 号染色体上 KSL8 和 MG1 基因位点的潜在遗传权衡。KSL8 通过粳(KSL8-jap)或籼(KSL8-ind)等位基因编码茎烷或茎烷型二萜生物合成的第一步。在粳稻栽培品种中敲除 KSL8-jap 和编码二萜合成上游酶的 CPS4,可提高对 S. frugiperda 的抗性,降低对 M. incognita 的抗性。此外,MG1 所处的单倍型可提供对 M. incognita 的抗性,而其他单倍型则参与介导对稻瘟病菌 Magnaporthe oryzae 及其他害虫和病原体的抗性。最后,KSL8 和 MG1 等位基因位于跨物种单倍型中,可能是在长期平衡选择下进化而来的。我们的数据符合一种假设,即 KSL8 和 MG1 的多态性可能通过复杂而分散的群落相互作用得以维持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信