Exploring Chemical Space to Identify Partial Binders Against hMPV Nucleocapsid Protein

IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Monika Verma, Nikita S. Panchal, Pramod Kumar Yadav
{"title":"Exploring Chemical Space to Identify Partial Binders Against hMPV Nucleocapsid Protein","authors":"Monika Verma, Nikita S. Panchal, Pramod Kumar Yadav","doi":"10.1002/jcb.30618","DOIUrl":null,"url":null,"abstract":"Human metapneumovirus (hMPV) has gained prominence in recent times as the predominant etiological agent of acute respiratory tract infections. This virus targets children, the elderly, and individuals with compromised immune systems. Given the protracted duration of hMPV transmission, it is probable that the majority of children will have acquired the virus by the age of 5. In individuals with compromised immune systems, recurrence of hMPV infection is possible. As hMPV matures, it remains latent from the time of acquisition. The genome of hMPV encompasses a pivotal protein referred to as the nucleocapsid protein (N). This protein assumes the form of a left‐handed helical nucleocapsid, enveloping the viral RNA genome. The primary function of this structure is to protect nucleases, rendering it a potentially promising target for therapeutic advancements. The present study employs a methodology that involves structure‐based virtual screening, followed by molecular dynamics simulation at a 250‐ns time scale, to identify potential natural molecules or their derivatives from the ZINC Database. These molecules are investigated for their binding properties against the hMPV nucleoprotein. Based on an evaluation of the docking score, binding site interaction, and molecular dynamics studies, it has been found that two naturally occurring molecules, namely M1 (ZINC85629735) and M3 (ZINC85569125), have shown notable docking scores of −9.6 and −10.7 kcal/mol, acceptable RMSD, RMSF, Rg, and so on calculated from molecular dynamics trajectory associated with MMGBSA binding energy of −81.94 and −99.63 kcal/mol, respectively. These molecules have shown the highest binding affinity toward nucleocapsid protein and demonstrated promising attributes as potential binders against hMPV.","PeriodicalId":15219,"journal":{"name":"Journal of cellular biochemistry","volume":"39 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cellular biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/jcb.30618","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Human metapneumovirus (hMPV) has gained prominence in recent times as the predominant etiological agent of acute respiratory tract infections. This virus targets children, the elderly, and individuals with compromised immune systems. Given the protracted duration of hMPV transmission, it is probable that the majority of children will have acquired the virus by the age of 5. In individuals with compromised immune systems, recurrence of hMPV infection is possible. As hMPV matures, it remains latent from the time of acquisition. The genome of hMPV encompasses a pivotal protein referred to as the nucleocapsid protein (N). This protein assumes the form of a left‐handed helical nucleocapsid, enveloping the viral RNA genome. The primary function of this structure is to protect nucleases, rendering it a potentially promising target for therapeutic advancements. The present study employs a methodology that involves structure‐based virtual screening, followed by molecular dynamics simulation at a 250‐ns time scale, to identify potential natural molecules or their derivatives from the ZINC Database. These molecules are investigated for their binding properties against the hMPV nucleoprotein. Based on an evaluation of the docking score, binding site interaction, and molecular dynamics studies, it has been found that two naturally occurring molecules, namely M1 (ZINC85629735) and M3 (ZINC85569125), have shown notable docking scores of −9.6 and −10.7 kcal/mol, acceptable RMSD, RMSF, Rg, and so on calculated from molecular dynamics trajectory associated with MMGBSA binding energy of −81.94 and −99.63 kcal/mol, respectively. These molecules have shown the highest binding affinity toward nucleocapsid protein and demonstrated promising attributes as potential binders against hMPV.
探索化学空间以确定 hMPV 核苷酸蛋白的部分结合剂
近来,人类偏肺病毒(hMPV)作为急性呼吸道感染的主要病原体日益突出。这种病毒主要针对儿童、老人和免疫系统受损的人群。由于 hMPV 的传播时间较长,大多数儿童可能在 5 岁前就感染了病毒。免疫系统受损的人有可能再次感染 hMPV。随着 hMPV 的成熟,它从感染时起就一直处于潜伏状态。hMPV 的基因组包含一种关键蛋白,即核壳蛋白(N)。这种蛋白呈左旋螺旋状核壳,包裹着病毒 RNA 基因组。这种结构的主要功能是保护核酸酶,使其成为一个潜在的治疗目标。本研究采用了一种方法,包括基于结构的虚拟筛选,然后以 250-ns 的时间尺度进行分子动力学模拟,从 ZINC 数据库中识别潜在的天然分子或其衍生物。研究了这些分子与 hMPV 核蛋白的结合特性。根据对对接得分、结合位点相互作用和分子动力学研究的评估,发现两个天然分子,即 M1(ZINC85629735)和 M3(ZINC85569125),显示了显著的对接得分,分别为 -9.6 和 -10.7 kcal/mol,从与 MMGBSA 结合能相关的分子动力学轨迹计算出的可接受 RMSD、RMSF、Rg 等分别为 -81.94 和 -99.63 kcal/mol。这些分子与核壳蛋白的结合亲和力最高,有望成为抗 hMPV 的潜在结合剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of cellular biochemistry
Journal of cellular biochemistry 生物-生化与分子生物学
CiteScore
9.90
自引率
0.00%
发文量
164
审稿时长
1 months
期刊介绍: The Journal of Cellular Biochemistry publishes descriptions of original research in which complex cellular, pathogenic, clinical, or animal model systems are studied by biochemical, molecular, genetic, epigenetic or quantitative ultrastructural approaches. Submission of papers reporting genomic, proteomic, bioinformatics and systems biology approaches to identify and characterize parameters of biological control in a cellular context are encouraged. The areas covered include, but are not restricted to, conditions, agents, regulatory networks, or differentiation states that influence structure, cell cycle & growth control, structure-function relationships.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信