The crucial role of hydroxyethyl methacrylate in the sintering of fused silica glass using ultraviolet-cured silica nanoparticle slurries: dispersing nanoparticles
{"title":"The crucial role of hydroxyethyl methacrylate in the sintering of fused silica glass using ultraviolet-cured silica nanoparticle slurries: dispersing nanoparticles","authors":"Youwang Hu, Guilin Wang, Qinglong Zhang, Xiaoyan Sun, Haikuan Chen","doi":"10.1007/s10971-024-06540-4","DOIUrl":null,"url":null,"abstract":"<div><p>Fused silica glass is prepared by dispersing silica nanoparticles (SiNPs) through the hydroxyethyl methacrylate (HEMA). The dispersion of SiNPs was characterized using transmission electron microscopy and small angle X-ray scattering. The rheological properties and functional groups of SiNP slurries were analyzed utilizing a rotational rheometer and fourier transform infrared spectroscopy. The sintering quality of the fused silica glass was characterized through scanning electron microscopy and X-ray diffraction. The research results show that HEMA adsorbs on the surface of SiNP through hydrogen bonding to form a solvation layer of a certain thickness, thereby hindering the agglomeration of SiNPs. The SiNP slurry system exhibits bi-fractal properties. The viscosity and shear stress of the SiNP slurry initially decrease and then increase with increasing HEMA content. Achieving a homogeneous dispersion of SiNPs in the slurry is essential for sintering high-quality silica glass. The internal voids of agglomerates are the origin of crack formation.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10971-024-06540-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Fused silica glass is prepared by dispersing silica nanoparticles (SiNPs) through the hydroxyethyl methacrylate (HEMA). The dispersion of SiNPs was characterized using transmission electron microscopy and small angle X-ray scattering. The rheological properties and functional groups of SiNP slurries were analyzed utilizing a rotational rheometer and fourier transform infrared spectroscopy. The sintering quality of the fused silica glass was characterized through scanning electron microscopy and X-ray diffraction. The research results show that HEMA adsorbs on the surface of SiNP through hydrogen bonding to form a solvation layer of a certain thickness, thereby hindering the agglomeration of SiNPs. The SiNP slurry system exhibits bi-fractal properties. The viscosity and shear stress of the SiNP slurry initially decrease and then increase with increasing HEMA content. Achieving a homogeneous dispersion of SiNPs in the slurry is essential for sintering high-quality silica glass. The internal voids of agglomerates are the origin of crack formation.