Effect of radius ratio on the sheared annular centrifugal turbulent convection

IF 3.6 2区 工程技术 Q1 MECHANICS
Jun Zhong, Junyi Li, Chao Sun
{"title":"Effect of radius ratio on the sheared annular centrifugal turbulent convection","authors":"Jun Zhong, Junyi Li, Chao Sun","doi":"10.1017/jfm.2024.543","DOIUrl":null,"url":null,"abstract":"We perform linear stability analysis and direct numerical simulations to study the effect of the radius ratio on the instability and flow characteristics of the sheared annular centrifugal Rayleigh–Bénard convection, where the cold inner cylinder and the hot outer cylinder rotate with a small angular velocity difference. With the shear enhancement, the thermal convection is suppressed and finally becomes stable for different radius ratios <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005433_inline1.png\"/> <jats:tex-math>$\\{\\eta \\in \\mathbb {R}|0.2\\leqslant \\eta \\le 0.95\\}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Considering the inhomogeneous distribution of shear stresses in the base flow, a new global Richardson number <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005433_inline2.png\"/> <jats:tex-math>$Ri_g$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is defined and the marginal-state curves for different radius ratios are successfully unified in the parameter domain of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005433_inline3.png\"/> <jats:tex-math>$Ri_g$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and the Rayleigh number <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005433_inline4.png\"/> <jats:tex-math>$Ra$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The results are consistent with the marginal-state curve of the wall-sheared classical Rayleigh–Bénard convection in the streamwise direction, demonstrating that the basic stabilization mechanisms are identical. Moreover, systems with small radius ratios exhibit greater geometric asymmetry. On the one hand, this results in a smaller equivalent aspect ratio for the system, accommodating fewer convection roll pairs; fewer roll pairs are more likely to cause a transition in the flow structure during shear enhancement. On the other hand, the shear distribution is more inhomogeneous, allowing for an outward shift of the convection region and the elevation of bulk temperature under strong shear.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"23 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/jfm.2024.543","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

We perform linear stability analysis and direct numerical simulations to study the effect of the radius ratio on the instability and flow characteristics of the sheared annular centrifugal Rayleigh–Bénard convection, where the cold inner cylinder and the hot outer cylinder rotate with a small angular velocity difference. With the shear enhancement, the thermal convection is suppressed and finally becomes stable for different radius ratios $\{\eta \in \mathbb {R}|0.2\leqslant \eta \le 0.95\}$ . Considering the inhomogeneous distribution of shear stresses in the base flow, a new global Richardson number $Ri_g$ is defined and the marginal-state curves for different radius ratios are successfully unified in the parameter domain of $Ri_g$ and the Rayleigh number $Ra$ . The results are consistent with the marginal-state curve of the wall-sheared classical Rayleigh–Bénard convection in the streamwise direction, demonstrating that the basic stabilization mechanisms are identical. Moreover, systems with small radius ratios exhibit greater geometric asymmetry. On the one hand, this results in a smaller equivalent aspect ratio for the system, accommodating fewer convection roll pairs; fewer roll pairs are more likely to cause a transition in the flow structure during shear enhancement. On the other hand, the shear distribution is more inhomogeneous, allowing for an outward shift of the convection region and the elevation of bulk temperature under strong shear.
半径比对剪切环形离心湍流对流的影响
我们通过线性稳定性分析和直接数值模拟研究了半径比对剪切环形离心雷利-贝纳德对流的不稳定性和流动特性的影响,其中冷内圆筒和热外圆筒以较小的角速度差旋转。随着剪切力的增强,热对流被抑制,并最终在不同半径比 $\{eta \in \mathbb {R}|0.2\leqslant \eta \le 0.95\}$ 下变得稳定。考虑到基底流中剪应力的不均匀分布,定义了一个新的全局理查森数 $Ri_g$,并成功地将不同半径比的边际状态曲线统一在参数域 $Ri_g$ 和瑞利数 $Ra$ 中。结果与流向壁剪切经典瑞利-贝纳德对流的边际状态曲线一致,表明基本稳定机制是相同的。此外,半径比小的系统表现出更大的几何不对称性。一方面,这导致系统的等效长宽比更小,可容纳的对流辊对更少;辊对更少更容易在剪切增强过程中导致流动结构的转变。另一方面,剪切力分布更不均匀,使得对流区域外移,在强剪切力作用下体积温度升高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
27.00%
发文量
945
审稿时长
5.1 months
期刊介绍: Journal of Fluid Mechanics is the leading international journal in the field and is essential reading for all those concerned with developments in fluid mechanics. It publishes authoritative articles covering theoretical, computational and experimental investigations of all aspects of the mechanics of fluids. Each issue contains papers on both the fundamental aspects of fluid mechanics, and their applications to other fields such as aeronautics, astrophysics, biology, chemical and mechanical engineering, hydraulics, meteorology, oceanography, geology, acoustics and combustion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信