Lei Ren, Xin Tao, Lu Zhang, Ke-Qing Xia, Yi-Chao Xie
{"title":"Heat transport in liquid metal convection from onset to turbulence: the effect of small aspect ratio","authors":"Lei Ren, Xin Tao, Lu Zhang, Ke-Qing Xia, Yi-Chao Xie","doi":"10.1017/jfm.2024.630","DOIUrl":null,"url":null,"abstract":"We present a systematic study on the effects of small aspect ratios <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline1.png\"/> <jats:tex-math>$\\varGamma$</jats:tex-math> </jats:alternatives> </jats:inline-formula> on heat transport in liquid metal convection with a Prandtl number of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline2.png\"/> <jats:tex-math>$Pr=0.029$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The study covers <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline3.png\"/> <jats:tex-math>$1/20\\le \\varGamma \\le 1$</jats:tex-math> </jats:alternatives> </jats:inline-formula> experimentally and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline4.png\"/> <jats:tex-math>$1/50\\le \\varGamma \\le 1$</jats:tex-math> </jats:alternatives> </jats:inline-formula> numerically, and a Rayleigh number <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline5.png\"/> <jats:tex-math>$Ra$</jats:tex-math> </jats:alternatives> </jats:inline-formula> range of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline6.png\"/> <jats:tex-math>$4\\times 10^3 \\le Ra \\le 7\\times 10^{9}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. It is found experimentally that the local effective heat transport scaling exponent <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline7.png\"/> <jats:tex-math>$\\gamma$</jats:tex-math> </jats:alternatives> </jats:inline-formula> changes with both <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline8.png\"/> <jats:tex-math>$Ra$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline9.png\"/> <jats:tex-math>$\\varGamma$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, attaining a <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline10.png\"/> <jats:tex-math>$\\varGamma$</jats:tex-math> </jats:alternatives> </jats:inline-formula>-dependent maximum value before transition-to-turbulence and approaches <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline11.png\"/> <jats:tex-math>$\\gamma =0.25$</jats:tex-math> </jats:alternatives> </jats:inline-formula> in the turbulence state as <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline12.png\"/> <jats:tex-math>$Ra$</jats:tex-math> </jats:alternatives> </jats:inline-formula> increases. Just above the onset of convection, Shishkina (<jats:italic>Phys. Rev. Fluids</jats:italic>, vol 6, 2021, 090502) derived a length scale <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline13.png\"/> <jats:tex-math>$\\ell =H/(1+1.49\\varGamma ^{-2})^{1/3}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Our numerical study shows <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline14.png\"/> <jats:tex-math>$Ra_{\\ell }$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, i.e. <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline15.png\"/> <jats:tex-math>$Ra$</jats:tex-math> </jats:alternatives> </jats:inline-formula> based on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline16.png\"/> <jats:tex-math>$\\ell$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, serves as a proper control parameter for heat transport above the onset with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline17.png\"/> <jats:tex-math>$Nu-1=0.018(1+0.34/\\varGamma ^2)(Ra/Ra_{c,\\varGamma }-1)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Here <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline18.png\"/> <jats:tex-math>$Ra_{c,\\varGamma }$</jats:tex-math> </jats:alternatives> </jats:inline-formula> represents the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline19.png\"/> <jats:tex-math>$\\varGamma$</jats:tex-math> </jats:alternatives> </jats:inline-formula>-dependent critical <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline20.png\"/> <jats:tex-math>$Ra$</jats:tex-math> </jats:alternatives> </jats:inline-formula> for the onset of convection and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline21.png\"/> <jats:tex-math>$Nu$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the Nusselt number. In the turbulent state, for a general scaling law of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline22.png\"/> <jats:tex-math>$Nu-1\\sim Ra^\\alpha$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, we propose a length scale <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline23.png\"/> <jats:tex-math>$\\ell = H/(1+1.49\\varGamma ^{-2})^{1/[3(1-\\alpha )]}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In the case of turbulent liquid metal convection with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline24.png\"/> <jats:tex-math>$\\alpha =1/4$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, our measurement shows that the heat transport will become weakly dependent on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline25.png\"/> <jats:tex-math>$\\varGamma$</jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline26.png\"/> <jats:tex-math>$Ra_{\\ell }\\equiv Ra/(1+1.49\\varGamma ^{-2})^{4/3} \\ge 7\\times 10^5$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Finally, once the flow becomes time-dependent, the growth rate of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline27.png\"/> <jats:tex-math>$Nu$</jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline28.png\"/> <jats:tex-math>$Ra$</jats:tex-math> </jats:alternatives> </jats:inline-formula> declines compared with the linear growth rate in the convection state. A hysteresis is observed in a <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline29.png\"/> <jats:tex-math>$\\varGamma =1/3$</jats:tex-math> </jats:alternatives> </jats:inline-formula> cell when the flow becomes time-dependent. Measurements of the large-scale circulation suggest the hysteresis is caused by the system switching from a single-roll-mode to a double-roll-mode in an oscillation state.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"75 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/jfm.2024.630","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
We present a systematic study on the effects of small aspect ratios $\varGamma$ on heat transport in liquid metal convection with a Prandtl number of $Pr=0.029$. The study covers $1/20\le \varGamma \le 1$ experimentally and $1/50\le \varGamma \le 1$ numerically, and a Rayleigh number $Ra$ range of $4\times 10^3 \le Ra \le 7\times 10^{9}$. It is found experimentally that the local effective heat transport scaling exponent $\gamma$ changes with both $Ra$ and $\varGamma$, attaining a $\varGamma$-dependent maximum value before transition-to-turbulence and approaches $\gamma =0.25$ in the turbulence state as $Ra$ increases. Just above the onset of convection, Shishkina (Phys. Rev. Fluids, vol 6, 2021, 090502) derived a length scale $\ell =H/(1+1.49\varGamma ^{-2})^{1/3}$. Our numerical study shows $Ra_{\ell }$, i.e. $Ra$ based on $\ell$, serves as a proper control parameter for heat transport above the onset with $Nu-1=0.018(1+0.34/\varGamma ^2)(Ra/Ra_{c,\varGamma }-1)$. Here $Ra_{c,\varGamma }$ represents the $\varGamma$-dependent critical $Ra$ for the onset of convection and $Nu$ is the Nusselt number. In the turbulent state, for a general scaling law of $Nu-1\sim Ra^\alpha$, we propose a length scale $\ell = H/(1+1.49\varGamma ^{-2})^{1/[3(1-\alpha )]}$. In the case of turbulent liquid metal convection with $\alpha =1/4$, our measurement shows that the heat transport will become weakly dependent on $\varGamma$ with $Ra_{\ell }\equiv Ra/(1+1.49\varGamma ^{-2})^{4/3} \ge 7\times 10^5$. Finally, once the flow becomes time-dependent, the growth rate of $Nu$ with $Ra$ declines compared with the linear growth rate in the convection state. A hysteresis is observed in a $\varGamma =1/3$ cell when the flow becomes time-dependent. Measurements of the large-scale circulation suggest the hysteresis is caused by the system switching from a single-roll-mode to a double-roll-mode in an oscillation state.
期刊介绍:
Journal of Fluid Mechanics is the leading international journal in the field and is essential reading for all those concerned with developments in fluid mechanics. It publishes authoritative articles covering theoretical, computational and experimental investigations of all aspects of the mechanics of fluids. Each issue contains papers on both the fundamental aspects of fluid mechanics, and their applications to other fields such as aeronautics, astrophysics, biology, chemical and mechanical engineering, hydraulics, meteorology, oceanography, geology, acoustics and combustion.