Heat transport in liquid metal convection from onset to turbulence: the effect of small aspect ratio

IF 3.6 2区 工程技术 Q1 MECHANICS
Lei Ren, Xin Tao, Lu Zhang, Ke-Qing Xia, Yi-Chao Xie
{"title":"Heat transport in liquid metal convection from onset to turbulence: the effect of small aspect ratio","authors":"Lei Ren, Xin Tao, Lu Zhang, Ke-Qing Xia, Yi-Chao Xie","doi":"10.1017/jfm.2024.630","DOIUrl":null,"url":null,"abstract":"We present a systematic study on the effects of small aspect ratios <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline1.png\"/> <jats:tex-math>$\\varGamma$</jats:tex-math> </jats:alternatives> </jats:inline-formula> on heat transport in liquid metal convection with a Prandtl number of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline2.png\"/> <jats:tex-math>$Pr=0.029$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The study covers <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline3.png\"/> <jats:tex-math>$1/20\\le \\varGamma \\le 1$</jats:tex-math> </jats:alternatives> </jats:inline-formula> experimentally and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline4.png\"/> <jats:tex-math>$1/50\\le \\varGamma \\le 1$</jats:tex-math> </jats:alternatives> </jats:inline-formula> numerically, and a Rayleigh number <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline5.png\"/> <jats:tex-math>$Ra$</jats:tex-math> </jats:alternatives> </jats:inline-formula> range of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline6.png\"/> <jats:tex-math>$4\\times 10^3 \\le Ra \\le 7\\times 10^{9}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. It is found experimentally that the local effective heat transport scaling exponent <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline7.png\"/> <jats:tex-math>$\\gamma$</jats:tex-math> </jats:alternatives> </jats:inline-formula> changes with both <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline8.png\"/> <jats:tex-math>$Ra$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline9.png\"/> <jats:tex-math>$\\varGamma$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, attaining a <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline10.png\"/> <jats:tex-math>$\\varGamma$</jats:tex-math> </jats:alternatives> </jats:inline-formula>-dependent maximum value before transition-to-turbulence and approaches <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline11.png\"/> <jats:tex-math>$\\gamma =0.25$</jats:tex-math> </jats:alternatives> </jats:inline-formula> in the turbulence state as <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline12.png\"/> <jats:tex-math>$Ra$</jats:tex-math> </jats:alternatives> </jats:inline-formula> increases. Just above the onset of convection, Shishkina (<jats:italic>Phys. Rev. Fluids</jats:italic>, vol 6, 2021, 090502) derived a length scale <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline13.png\"/> <jats:tex-math>$\\ell =H/(1+1.49\\varGamma ^{-2})^{1/3}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Our numerical study shows <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline14.png\"/> <jats:tex-math>$Ra_{\\ell }$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, i.e. <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline15.png\"/> <jats:tex-math>$Ra$</jats:tex-math> </jats:alternatives> </jats:inline-formula> based on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline16.png\"/> <jats:tex-math>$\\ell$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, serves as a proper control parameter for heat transport above the onset with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline17.png\"/> <jats:tex-math>$Nu-1=0.018(1+0.34/\\varGamma ^2)(Ra/Ra_{c,\\varGamma }-1)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Here <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline18.png\"/> <jats:tex-math>$Ra_{c,\\varGamma }$</jats:tex-math> </jats:alternatives> </jats:inline-formula> represents the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline19.png\"/> <jats:tex-math>$\\varGamma$</jats:tex-math> </jats:alternatives> </jats:inline-formula>-dependent critical <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline20.png\"/> <jats:tex-math>$Ra$</jats:tex-math> </jats:alternatives> </jats:inline-formula> for the onset of convection and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline21.png\"/> <jats:tex-math>$Nu$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the Nusselt number. In the turbulent state, for a general scaling law of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline22.png\"/> <jats:tex-math>$Nu-1\\sim Ra^\\alpha$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, we propose a length scale <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline23.png\"/> <jats:tex-math>$\\ell = H/(1+1.49\\varGamma ^{-2})^{1/[3(1-\\alpha )]}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In the case of turbulent liquid metal convection with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline24.png\"/> <jats:tex-math>$\\alpha =1/4$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, our measurement shows that the heat transport will become weakly dependent on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline25.png\"/> <jats:tex-math>$\\varGamma$</jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline26.png\"/> <jats:tex-math>$Ra_{\\ell }\\equiv Ra/(1+1.49\\varGamma ^{-2})^{4/3} \\ge 7\\times 10^5$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Finally, once the flow becomes time-dependent, the growth rate of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline27.png\"/> <jats:tex-math>$Nu$</jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline28.png\"/> <jats:tex-math>$Ra$</jats:tex-math> </jats:alternatives> </jats:inline-formula> declines compared with the linear growth rate in the convection state. A hysteresis is observed in a <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400630X_inline29.png\"/> <jats:tex-math>$\\varGamma =1/3$</jats:tex-math> </jats:alternatives> </jats:inline-formula> cell when the flow becomes time-dependent. Measurements of the large-scale circulation suggest the hysteresis is caused by the system switching from a single-roll-mode to a double-roll-mode in an oscillation state.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"75 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/jfm.2024.630","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

We present a systematic study on the effects of small aspect ratios $\varGamma$ on heat transport in liquid metal convection with a Prandtl number of $Pr=0.029$ . The study covers $1/20\le \varGamma \le 1$ experimentally and $1/50\le \varGamma \le 1$ numerically, and a Rayleigh number $Ra$ range of $4\times 10^3 \le Ra \le 7\times 10^{9}$ . It is found experimentally that the local effective heat transport scaling exponent $\gamma$ changes with both $Ra$ and $\varGamma$ , attaining a $\varGamma$ -dependent maximum value before transition-to-turbulence and approaches $\gamma =0.25$ in the turbulence state as $Ra$ increases. Just above the onset of convection, Shishkina (Phys. Rev. Fluids, vol 6, 2021, 090502) derived a length scale $\ell =H/(1+1.49\varGamma ^{-2})^{1/3}$ . Our numerical study shows $Ra_{\ell }$ , i.e. $Ra$ based on $\ell$ , serves as a proper control parameter for heat transport above the onset with $Nu-1=0.018(1+0.34/\varGamma ^2)(Ra/Ra_{c,\varGamma }-1)$ . Here $Ra_{c,\varGamma }$ represents the $\varGamma$ -dependent critical $Ra$ for the onset of convection and $Nu$ is the Nusselt number. In the turbulent state, for a general scaling law of $Nu-1\sim Ra^\alpha$ , we propose a length scale $\ell = H/(1+1.49\varGamma ^{-2})^{1/[3(1-\alpha )]}$ . In the case of turbulent liquid metal convection with $\alpha =1/4$ , our measurement shows that the heat transport will become weakly dependent on $\varGamma$ with $Ra_{\ell }\equiv Ra/(1+1.49\varGamma ^{-2})^{4/3} \ge 7\times 10^5$ . Finally, once the flow becomes time-dependent, the growth rate of $Nu$ with $Ra$ declines compared with the linear growth rate in the convection state. A hysteresis is observed in a $\varGamma =1/3$ cell when the flow becomes time-dependent. Measurements of the large-scale circulation suggest the hysteresis is caused by the system switching from a single-roll-mode to a double-roll-mode in an oscillation state.
液态金属对流中从起始到湍流的热传输:小长径比的影响
我们系统地研究了在普朗特数为 $Pr=0.029$ 的情况下,小纵横比 $\varGamma$ 对液态金属对流中热传输的影响。研究涵盖了实验上的 1/20 (le \varGamma \le 1)美元和数值上的 1/50 (le \varGamma \le 1)美元,以及雷利数 $Ra$ 范围为 4 (times 10^3 \le Ra \le 7 (times 10^{9}$ )美元。实验发现,局部有效热传输比例指数 $\gamma$ 随着 $Ra$ 和 $\varGamma$ 的变化而变化,在过渡到湍流之前达到一个依赖于 $\varGamma$ 的最大值,并且随着 $Ra$ 的增加,在湍流状态下接近 $\gamma =0.25$。就在对流开始的上方,Shishkina(Phys. Rev. Fluids, vol 6, 2021, 090502)导出了一个长度尺度 $\ell =H/(1+1.49\varGamma ^{-2})^{1/3}$ 。我们的数值研究表明,$Ra_{\ell }$ ,即基于 $\ell$ 的 $Ra$ ,是起始点上方热传输的合适控制参数,其值为 $Nu-1=0.018(1+0.34/\varGamma ^2)(Ra/Ra_{c,\varGamma }-1)$ 。这里的 $Ra_{c,\varGamma }$ 代表对流开始时依赖于 $\varGamma$ 的临界值 $Ra$,$Nu$ 是努塞尔特数。在湍流状态下,对于 $Nu-1\sim Ra^\alpha$ 的一般缩放规律,我们提出了长度尺度 $\ell = H/(1+1.49\varGamma ^{-2})^{1/[3(1-\alpha )]}$ 。在$\alpha =1/4$的湍流液态金属对流情况下,我们的测量结果表明,热量传输将变得微弱地依赖于$\varGamma$,$Ra_{\ell }\equiv Ra/(1+1.49\varGamma ^{-2})^{4/3}。\7 times 10^5$ 。最后,一旦流动变得与时间相关,与对流状态下的线性增长率相比,$Nu$随$Ra$的增长率会下降。当流动变得与时间相关时,在 $\varGamma =1/3$ 单元中观察到滞后现象。对大尺度环流的测量表明,滞后是由系统在振荡状态下从单滚模式切换到双滚模式造成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
27.00%
发文量
945
审稿时长
5.1 months
期刊介绍: Journal of Fluid Mechanics is the leading international journal in the field and is essential reading for all those concerned with developments in fluid mechanics. It publishes authoritative articles covering theoretical, computational and experimental investigations of all aspects of the mechanics of fluids. Each issue contains papers on both the fundamental aspects of fluid mechanics, and their applications to other fields such as aeronautics, astrophysics, biology, chemical and mechanical engineering, hydraulics, meteorology, oceanography, geology, acoustics and combustion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信