Peter Lewin-Jones, Duncan A. Lockerby, James E. Sprittles
{"title":"Collision of liquid drops: bounce or merge?","authors":"Peter Lewin-Jones, Duncan A. Lockerby, James E. Sprittles","doi":"10.1017/jfm.2024.722","DOIUrl":null,"url":null,"abstract":"Whether colliding drops will merge with or bounce off each other is critical to numerous processes, and the physics involved is notoriously complex. In particular, experiments show that both sufficiently slow and fast head-on drop collisions lead to merging, but that there is often an intermediate regime in which bouncing is observed; these transitions in behaviour were recently discovered to be surprisingly sensitive to the radius of the drops and the ambient gas pressure. We show here that these transitions between bouncing and merging are governed by nanoscale phenomena; namely, gas-kinetic and disjoining pressure effects. To capture these crucial effects, a novel, open-source computational model is developed for the simulation of colliding drops. The model uses a hybrid approach, based on solving the Navier–Stokes equations in the drop with a lubrication approach for the unconventional physics of the gas film. Our simulations show remarkably good agreement with experiments of head-on collisions and also provide new experimentally verifiable predictions.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"2 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/jfm.2024.722","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Whether colliding drops will merge with or bounce off each other is critical to numerous processes, and the physics involved is notoriously complex. In particular, experiments show that both sufficiently slow and fast head-on drop collisions lead to merging, but that there is often an intermediate regime in which bouncing is observed; these transitions in behaviour were recently discovered to be surprisingly sensitive to the radius of the drops and the ambient gas pressure. We show here that these transitions between bouncing and merging are governed by nanoscale phenomena; namely, gas-kinetic and disjoining pressure effects. To capture these crucial effects, a novel, open-source computational model is developed for the simulation of colliding drops. The model uses a hybrid approach, based on solving the Navier–Stokes equations in the drop with a lubrication approach for the unconventional physics of the gas film. Our simulations show remarkably good agreement with experiments of head-on collisions and also provide new experimentally verifiable predictions.
期刊介绍:
Journal of Fluid Mechanics is the leading international journal in the field and is essential reading for all those concerned with developments in fluid mechanics. It publishes authoritative articles covering theoretical, computational and experimental investigations of all aspects of the mechanics of fluids. Each issue contains papers on both the fundamental aspects of fluid mechanics, and their applications to other fields such as aeronautics, astrophysics, biology, chemical and mechanical engineering, hydraulics, meteorology, oceanography, geology, acoustics and combustion.