Sumia Rubab, Sarah A. Alsalhi, A. Dahshan, Muhammad Aslam, Khursheed Ahmad, Albandari.W. Alrowaily
{"title":"Fabrication of SrSnO3/rGO composite via hydrothermal technique as robust electrocatalyst for OER process","authors":"Sumia Rubab, Sarah A. Alsalhi, A. Dahshan, Muhammad Aslam, Khursheed Ahmad, Albandari.W. Alrowaily","doi":"10.1007/s10971-024-06521-7","DOIUrl":null,"url":null,"abstract":"<p>Developing effective and durable electrocatalysts for long-term energy conversion technologies is still an ongoing problem for researchers. For this purpose, perovskite oxides have attracted significant interest as effective electrocatalysts for oxygen evolution reactions (OER) in response to their highly adjustable catalytic and electrical properties associated with their compositions. This study presents a novel hydrothermal approach to fabricate SrSnO<sub>3</sub>/rGO composite in order to accelerate the four electron transfer mechanisms. Moreover, the physical analyses show that cubic-shaped SrSnO<sub>3</sub> are irregularly dispersed in the form of spherical on the nanosheets of rGO. Compared with pristine, the BET study shows that composite exhibits a greater surface area (59 m<sup>2</sup> g<sup>−1</sup>). To evaluate the catalytic kinetics, conductivity and stability, the electrochemical evaluation of the electrode material (SrSnO<sub>3</sub>/rGO) was performed in alkaline media with Ni foam (NF) as substrate. The exceptional electrocatalytic performance of the material in the OER could be associated with its unique structure, many active sites, and favorable conductivity. This performance is characterized by fast reaction rates, as indicated by a minimal Tafel constant (33 mV dec<sup>−1</sup>) along with reduced overpotential (199 mV) at 10 mA cm<sup>−2</sup>. Moreover, the chronoamperometry (CA) investigation of the SrSnO<sub>3</sub>/rGO composite indicates 35 h of long-term stability. This study presents a viable approach for producing high-performing perovskite composites for effective OER electrocatalysis.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sol-Gel Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s10971-024-06521-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Developing effective and durable electrocatalysts for long-term energy conversion technologies is still an ongoing problem for researchers. For this purpose, perovskite oxides have attracted significant interest as effective electrocatalysts for oxygen evolution reactions (OER) in response to their highly adjustable catalytic and electrical properties associated with their compositions. This study presents a novel hydrothermal approach to fabricate SrSnO3/rGO composite in order to accelerate the four electron transfer mechanisms. Moreover, the physical analyses show that cubic-shaped SrSnO3 are irregularly dispersed in the form of spherical on the nanosheets of rGO. Compared with pristine, the BET study shows that composite exhibits a greater surface area (59 m2 g−1). To evaluate the catalytic kinetics, conductivity and stability, the electrochemical evaluation of the electrode material (SrSnO3/rGO) was performed in alkaline media with Ni foam (NF) as substrate. The exceptional electrocatalytic performance of the material in the OER could be associated with its unique structure, many active sites, and favorable conductivity. This performance is characterized by fast reaction rates, as indicated by a minimal Tafel constant (33 mV dec−1) along with reduced overpotential (199 mV) at 10 mA cm−2. Moreover, the chronoamperometry (CA) investigation of the SrSnO3/rGO composite indicates 35 h of long-term stability. This study presents a viable approach for producing high-performing perovskite composites for effective OER electrocatalysis.
期刊介绍:
The primary objective of the Journal of Sol-Gel Science and Technology (JSST), the official journal of the International Sol-Gel Society, is to provide an international forum for the dissemination of scientific, technological, and general knowledge about materials processed by chemical nanotechnologies known as the "sol-gel" process. The materials of interest include gels, gel-derived glasses, ceramics in form of nano- and micro-powders, bulk, fibres, thin films and coatings as well as more recent materials such as hybrid organic-inorganic materials and composites. Such materials exhibit a wide range of optical, electronic, magnetic, chemical, environmental, and biomedical properties and functionalities. Methods for producing sol-gel-derived materials and the industrial uses of these materials are also of great interest.